суббота, 25 мая 2019 г.

Few-Shot Adversarial Learning of Realistic Neural Talking Head Models




Several recent works have shown how highly realistic human head images can be obtained by training convolutional neural networks to generate them. In order to create a personalized talking head model, these works require training on a large dataset of images of a single person. However, in many practical scenarios, such personalized talking head models need to be learned from a few image views of a person, potentially even a single image. Here, we present a system with such few-shot capability. It performs lengthy meta-learning on a large dataset of videos, and after that is able to frame few- and one-shot learning of neural talking head models of previously unseen people as adversarial training problems with high capacity generators and discriminators. Crucially, the system is able to initialize the parameters of both the generator and the discriminator in a person-specific way, so that training can be based on just a few images and done quickly, despite the need to tune tens of millions of parameters. We show that such an approach is able to learn highly realistic and personalized talking head models of new people and even portrait paintings.
Subjects:Computer Vision and Pattern Recognition (cs.CV); Graphics (cs.GR); Machine Learning (cs.LG)
https://bitlylink.com/8ik95




We believe that telepresence technologies in AR, VR and other media are to transform the world in the not-so-distant future. Shifting a part of human life-like communication to the virtual and augmented worlds will have several positive effects. It will lead to a reduction in long-distance travel and short-distance commute. It will democratize education, and improve the quality of life for people with disabilities. It will distribute jobs more fairly and uniformly around the World. It will better connect relatives and friends separated by distance. To achieve all these effects, we need to make human communication in AR and VR as realistic and compelling as possible, and the creation of photorealistic avatars is one (small) step towards this future. In other words, in future telepresence systems, people will need to be represented by the realistic semblances of themselves, and creating such avatars should be easy for the users. This application and scientific curiosity is what drives the research in our group, including the project presented in this video. We realize that our technology can have a negative use for the so-called “deepfake” videos. However, it is important to realize, that Hollywood has been making fake videos (aka “special effects”) for a century, and deep networks with similar capabilities have been available for the past several years (see links in the paper). Our work (and quite a few parallel works) will lead to the democratization of the certain special effects technologies. And the democratization of the technologies has always had negative effects. Democratizing sound editing tools lead to the rise of pranksters and fake audios, democratizing video recording lead to the appearance of footage taken without consent. In each of the past cases, the net effect of democratization on the World has been positive, and mechanisms for stemming the negative effects have been developed. We believe that the case of neural avatar technology will be no different. Our belief is supported by the ongoing development of tools for fake video detection and face spoof detection alongside with the ongoing shift for privacy and data security in major IT companies.


Комментариев нет:

Отправить комментарий