вторник, 30 мая 2017 г.

FAVORITE IMAGES OF THE WEEK - 15


Living and breathing

Hannah Cohen / MIT
1 of 5
Most of us sweat a lot when we work out. And while many workout clothes today have been specifically designed to help sweat evaporate more easily, none of them had done so using bacteria. Until now. A group of researchers at MIT developed a prototype that uses B. subtilis—when it comes in contact with sweat, it absorbs the moisture and relaxes, allowing the clothing to relax, too. The researchers say this new tech is just a stepping stone on the way to developing a shirt that can also make your sweat smell good.


No dye needed

Joshua Stevens/NASA
2 of 5
This lake isn't great for swimming. Located in Northern Tanzania, Lake Natron is one of the most inhospitable places in the world. Because its located just beneath a volcano, the lake receives a steady supply of molten lava, the contents of which turns the lake its fiery red color. While most living creatures wouldn't survive one second in that water, some salt-loving extremist bacteria bask in the briny depths. The image here of the lake was taken this past March via the The Operational Land Imager (OLI) on Landsat 8.


Lift off

Rocket Lab
3 of 5
New Zealand's first commercial rocket took to the skies this week, following three scrubbed attempts. The Electron Rocket, which belongs to New Zealand's Rocket Lab company, stands only at 55 feet tall. It could become an inexpensive way to place small satellite systems into space.


Jupiter up close

NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles
4 of 5
New images from NASA's Juno mission, which launched in 2011 and went into orbit around Jupiter in August of last year, show the gassy planet's turbulent atmosphere. This one, which NASA just released this past week, shows that both of Jupiter's poles contain swirling storms the size of Earth.


Shape shifters

Michael Indresano Production
5 of 5
Can't decide on what shape of pasta you want? Perhaps one day you might not have to. A group of researchers from MIT used the adaptive absorption of gelatin to develop a pasta sits flat in its packaging, but then forms into 3D shapes when it comes into contact with water. With some more research, they think consumers could even design their own shapes at home. Here's a cool video of the process in action.




Сахарный диабет и поражение органов-мишеней как предиктор его развития


Резюме. Оценка взаимосвязи между установленным поражением органов-мишеней и последующим развитием сахарного диабета

Сахарный диабет (СД) (лат. diabetes mellītus) — группа эндокринных заболеваний, связанных с нарушением усвоения глюкозы и развивающихся вследствие абсолютной или относительной (нарушение взаимодействия с клетками-мишенями) недостаточности гормона инсулина, в результате чего возникает гипергликемия — стойкое повышение уровня глюкозы в крови. Данное заболевание характеризуется хроническим течением, а также нарушением всех видов обмена веществ: углеводного, жирового, белкового, минерального и водно-солевого.

СД 2-го типа, подобно артериальной гипертензии, ожирению и некоторым другим заболеваниям, также ассоциирован с последующим поражением органов-мишеней (ПОМ). Тем не менее ранее установленная последовательность между основными факторами риска развития сердечно-сосудистых заболеваний и ПОМ поставлена под сомнение в связи с выявленными доказательствами того, что в отдельных случаях ПОМ предшествует клиническому проявлению основного заболевания, которое, как полагается, приводит к ПОМ.
Совсем недавно результаты статистических анализов, проведенных в популяции с установленной артериальной гипертензией в рамках итальянского исследования Registro Campania Salute Network on Hypertension (RCSN), показали, что гипертрофия левого желудочка и/или атеросклеротические изменения сонных артерий являются предикторами развития СД 2-го типа независимо от ряда других известных факторов риска, таких как возраст, наличие метаболического синдрома, отягощенный семейный анамнез по поводу СД, длительность артериальной гипертензии, количество и группа принимаемых антигипертензивных препаратов.

В связи с этим коллектив итальянских и американских ученых провел исследование, основной задачей которого были оценка взаимосвязи между установленным ПОМ и последующим развитием СД 2-го типа, а также определение условий ассоциации ПОМ с преддиабетом. Результаты данного исследования опубликованы 12 мая 2017 г. в журнале «Cardiovascular Diabetology» («Сердечно-сосудистая диабетология»). Отмечается, что работа была частично поддержана грантами одного из Национальных институтов здравоохранения (National Institutes of Health, Bethesda, Maryland) Соединенных Штатов Америки.

В ходе данного изучения авторы проанализировали результаты популяционного когортного исследования факторов риска и заболеваний сердечно-сосудистой системы Strong Heart Study (SHS). В результате с учетом критериев исключения, которыми стали установленный ранее СД, отказ пациентов от участия, летальный исход в период исследования и отсутствие полноты необходимых данных пациентов, в этой работе приняли участие 2887 человек (из них 60% (1721) — женщины), а период наблюдения составил 4 года.

Основными показателями, учитываемыми в статистическом анализе данных, стали уровень глюкозы в крови натощак, а также индекс массы тела, окружность талии, ожирение, масса тела без жировой ткани, количество жировой ткани, уровень артериального давления, липидный профиль, скорость клубочковой фильтрации (рассчитанная по упрощенной формуле), данные эхокардиографии и некоторые другие лабораторные показатели.
В результате изначально установлено, что нарушение гликемии натощак определялось у 1062 участников (из них 57% — женщины). В итоге через 4 года после первоначального исследования выявлены 297 новых случаев развития СД (10% исследуемой популяции), в 216 из которых определено нарушение уровня глюкозы в крови натощак. Причем на первоначальном этапе исследования артериальная гипертензия была установлена у 30% людей с нормальным уровнем глюкозы в крови, а в группе с нарушениями данного показателя доля людей с гипертензией составила 48%.

Авторы отмечают, что участники, у которых впоследствии установлен диагноз СД 2-го типа, изначально также имели более высокие уровни воспалительных маркеров, артериального давления, более высокую частоту сердечных сокращений, более низкий уровень липопротеинов высокой плотности и более высокий уровень триглицеридов в крови, бóльшую массу тела без жировой ткани, а также собственно количество жировой ткани, и более высокую распространенность исходных патологических показателей дилатации левого предсердия и гипертрофии левого желудочка (с тенденцией к концентрической гипертрофии).

При многофакторной логистической регрессии, учитывающей возраст, пол, семейные факторы, наличие артериальной гипертензии и отклонения в уровне глюкозы в крови натощак, все показатели ПОМ оказались предикторами развития СД. Однако стоит уточнить, что эффекты ПОМ были компенсированы, когда в анализируемую модель были добавлены показатели количества жировой ткани и уровня воспалительных маркеров.
Авторы уточняют, что в настоящем исследовании принят самый простой возможный диагностический критерий для установления СД согласно рекомендациям Американской диабетической ассоциации (American Diabetes Association — ADA), основанный на повышении уровня глюкозы в крови. Однако в случае использования более углубленного скрининга с пероральным тестом на толерантность к глюкозе могла бы быть выявлена бóльшая распространенность СД и, соответственно, усовершенствован отбор исследуемой популяции.

Также специалисты акцентируют внимание на том, что артериальная гипертензия была определена с использованием офисного, а не амбулаторного мониторирования уровня артериального давления. А поскольку достаточно высока распространенность центрального ожирения и нарушения гликемии натощак, то и скрытая артериальная гипертензия, возможно, не редка у участников данной когорты. Исходя из этого, исследователи уточняют, что также есть вероятность недооценки распространенности артериальной гипертензии во время первоначального обследования.

Как резюмируют авторы, в этом популяционном исследовании продемонстрировано, что ПОМ (в основном сердечно-сосудистой и мочевыделительной систем), ассоциированное с СД 2-го типа, может предшествовать клиническому выявлению последнего, но в значительной степени связано с метаболическим статусом и воспалительным состоянием организма.
Олег Мартышин

Почечные признаки первичных митохондриальных заболеваний


Резюме. Проведен обзор подходов к выявлению митохондриальной нефропатии в клинической практике

В зависимости от фенотипа различают синдромальные и несиндромальные формы первичных митохондриальных заболеваний (ПМЗ). Первые характеризуются сходной «мозаикой» симптомов и признаков, имеющих общую причину, а также вовлеченностью в патологический процесс сразу нескольких органов или типов тканей. Синдром полиорганного митохондриального заболевания может быть определяем с момента появления первых клинических признаков или развиться в ходе болезни. Наиболее часто ПМЗ поражают мышечную систему, периферические нервы, центральную нервную систему, органы зрения и слуха, эндокринную систему, сердце, легкие, желудочно-­кишечный тракт, почки, кожу.

При ПМЗ почки вовлечены в патологический процесс в значительной степени. Однако до сих пор не существовало системного обзора этого вопроса. Ученые из Венского муниципального госпиталя (Municipal Hospital Rudolfstiftung), Австрия, и Федерального университета Сан-Паулу (Federal University of São Paulo), Бразилия, в совместной работе стремятся восполнить этот пробел. Системный обзор опубликован в апреле 2017 г. на страницах журнала «Biomedical Reports». Его целью является обобщение и обсуждение предшествующих выводов касательно почечных проявлений ПМЗ.

Поскольку ПМЗ чаще всего присутствует в виде синдрома полиорганного митохондриального заболевания, почечные признаки обычно включают: почечную недостаточность, нефролитиаз, нефротический синдром, кисты почек, почечный канальцевый ацидоз (ПКА), Барттер-подобный синдром, синдром Фанкони, фокальный сегментарный гломерулосклероз, тубулоинтерстициальный нефрит, нефрокальциноз, доброкачественные или злокачественные новообразования.

Среди синдромальных ПМЗ поражение почек наиболее часто выявляли у пациентов с митохондриальной энцефаломиопатией, молочнокислым ацидозом с инсультоподобными эпизодами, синдромом Кернса — Сейра, синдромом Ли и синдромами митохондриального истощения. Единичные случаи: сочетание почечной митохондриальной патологии с хронической прогрессирующей внешней офтальмоплегией; синдромом Пирсона; наследственной оптической нейропатией Лебера; дефицитом коэнзима Q10; Х-хромосомной сидеробластной анемией и атаксией; миопатией; молочным ацидозом; собственно сидеробластной анемией; дефицитом пируватдегидрогеназы; задержкой физического развития; аминоацидурией; холестазом; перегрузкой железом; лактатацидозом и ранней смертью; гиперурикемией; легочной гипертензией; почечной недостаточностью в младенчестве и алкалоз-синдромом. Авторы предполагают, что частота поражения почек при ПМЗ, по оценкам клиницистов, вероятно занижена. В диагностике поражений почек врачи следуют общим рекомендациям и зачастую проводят симптоматическое лечение. Важность почечных проявлений при ПМЗ, определяющих исход болезни, требует дополнительного признания и надлежащего контроля.

Митохондриальные нефропатии бывают первичными и вторичными (в результате первичного поражения других органов). Так, причиной инфаркта почки может стать фибрилляция предсердий или сердечная недостаточность; возможны поражения почек в результате первичной митохондриальной артериальной гипертензии; при митохондриальном диабете почечная недостаточность может быть следствием первичного поражения поджелудочной железы; причиной почечной недостаточности может стать рабдомиолиз, митохондриальная миопатия или митохондриальная эпилепсия.

Первичные почечные признаки ПМЗ включают в себя острую или хроническую почечную недостаточность, нефролитиаз, нефротический синдром, кисты почек, ПКА, Барттер-подобный синдром, синдром де Тони — Дебре — Фанкони, фокальный сегментарный гломерулосклероз, тубулоинтерстициальный нефрит, нефрокальциноз и доброкачественные или злокачественные новообразования.

Степень вовлечения почек в ПМЗ может быть классифицирована по количеству дополнительно затронутых органов. В отсутствие синдрома полиорганного митохондриального заболевания весьма сложно заподозрить именно митохондриальную природу болезни почек. Кроме того, существует классификация по фенотипу с разным уровнем доминантности. Дальнейшая дифференцировка поражений почек при ПМЗ зависит от клинических или субклинических проявлений. Для исследования субклинического уровня требуется биопсия или аутопсия почки с целью выявления морфологических аномалий митохондрий.

Диагноз ПМЗ основывается на результатах анализа крови, мочи, общего осмотра, функциональных тестов и биопсии. Помимо нарушений митохондриальной морфологии, биопсия может выявить дегенеративные изменения эпителиальных клеток почечных канальцев. Дополнительные биохимические исследования помогают выявить дисфункцию одного или нескольких комплексов митохондриальной дыхательной цепи; генетические — мутации в митохондриальной ДНК. У одного пациента может быть выявлено сразу несколько видов почечной патологии.

Лечение митохондриальной нефропатии такое же, как при немитохондриальной нефропатии, однако следует избегать применения цитотоксичных препаратов, способных повлиять на функции митохондрий. Отмечен позитивный результат поддерживающего лечения антиоксидантами, кофакторами и витаминами. Пациентам со стероидрезистентным нефротическим синдромом требуется прием коэнзима Q10. В соответствии с тяжестью митохондриальной почечной недостаточности может потребоваться применение гемодиализа.
Результаты выполненного обзора свидетельствуют, что поражение почек при ПМЗ возникает чаще, чем первоначально предполагалось, а первичное и вторичное вовлечение почек в патологический процесс возможно как при синдромальных, так и при несиндромальных ПМЗ.

Диагностика поражений почек при ПМЗ аналогична стандартной диагностике заболеваний этого органа, но для пациентов с Барттер-подобным синдромом необходимо исключить собственно синдром Барттера. Если митохондриальная нефропатия является начальным проявлением ПМЗ, то для адекватной диагностики требуется проведение биопсии.

Александр Гузий

четверг, 25 мая 2017 г.

Одна вселенная или множество?


Как выглядит Вселенная на очень больших расстояниях, в областях, недоступных наблюдению? И есть ли предел тому, как далеко мы можем заглянуть? Наш космический горизонт определяется расстоянием до самых далеких объектов, свет которых успел прийти к нам за 14 миллиардов лет с момента Большого взрыва. Из-за ускоренного расширения Вселенной эти объекты сейчас удалены уже на 40 миллиардов световых лет. От более далеких объектов свет к нам еще не дошел. Так что же находится там, за горизонтом? Фото: SPL/EAST NEWS

Одна Вселенная или множество?

Как выглядит Вселенная на очень больших расстояниях, в областях, недоступных наблюдению? И есть ли предел тому, как далеко мы можем заглянуть? Наш космический горизонт определяется расстоянием до самых далеких объектов, свет которых успел прийти к нам за 14 миллиардов лет с момента Большого взрыва. Из-за ускоренного расширения Вселенной эти объекты сейчас удалены уже на 40 миллиардов световых лет. От более далеких объектов свет к нам еще не дошел. Так что же находится там, за горизонтом? До недавнего времени физики давали очень простой ответ на этот вопрос: там все то же самое — такие же галактики, такие же звезды. Но современные достижения в космологии и физике элементарных частиц позволили пересмотреть эти представления. В новой картине мира отдаленные области Вселенной разительно отличаются от того, что мы видим вокруг себя, и могут даже подчиняться иным законам физики.
Новые представления основаны на теории космической инфляции. Попробуем разъяснить ее суть. Начнем с краткого обзора стандартной космологии Большого взрыва, которая была доминирующей теорией до открытия инфляции.
Согласно теории Большого взрыва Вселенная началась с колоссальной катастрофы, которая разразилась около 14 миллиардов лет назад. Большой взрыв случился не в каком-то определенном месте Вселенной, а сразу везде. В то время не было звезд, галактик и даже атомов, и Вселенную заполнял очень горячий плотный и быстро расширяющийся сгусток материи и излучения. Увеличиваясь в размерах, он остывал. Примерно три минуты спустя после Большого взрыва температура снизилась достаточно для формирования атомных ядер, а через полмиллиона лет электроны и ядра объединились в электрически нейтральные атомы и Вселенная стала прозрачна для света. Это позволяет нам сегодня регистрировать свет, испущенный огненным сгустком. Он приходит со всех направлений на небе и называется космическим фоновым излучением.
Первоначально огненный сгусток был почти идеально однородным. Но крошечные неоднородности в нем все-таки были: в некоторых областях плотность была чуть выше, чем в других. Эти неоднородности росли, стягивая своей гравитацией все больше вещества из окружающего пространства, и за миллиарды лет превратились в галактики. И лишь совсем недавно по космическим меркам на сцене появились мы, люди.
В пользу теории Большого взрыва говорит множество наблюдательных данных, не оставляющих сомнений в том, что этот сценарий в основном корректен. Прежде всего мы видим, как далекие галактики разбегаются от нас с очень большими скоростями, что указывает на расширение Вселенной. Также теория Большого взрыва объясняет распространенность во Вселенной легких элементов, таких как гелий и литий. Но самой главной уликой, можно сказать, дымящимся стволом Большого взрыва, служит космическое фоновое излучение — послесвечение первичного огненного шара, до сих пор позволяющее его наблюдать и исследовать. За его изучение присуждены уже две Нобелевские премии.
Итак, мы, похоже, располагаем весьма успешной теорией. И все же она оставляет без ответа некоторые интригующие вопросы, касающиеся начального состояния Вселенной сразу после Большого взрыва. Почему Вселенная была такой горячей? Почему она стала расширяться? Почему она была такой однородной? И, наконец, что было с ней до Большого взрыва?
На все эти вопросы отвечает теория инфляции, которую Алан Гут выдвинул 28 лет назад.

Космическая инфляция

Центральную роль в этой теории играет особая форма материи, называемая ложным вакуумом. В обыденном понимании этого слова вакуум — просто абсолютно пустое пространство. Но для физиков, занимающихся элементарными частицами, вакуум — далеко не полное ничто, а физический объект, обладающий энергией и давлением, который может находиться в различных энергетических состояниях. Физики называют эти состояния разными вакуумами, от их характеристик зависят свойства элементарных частиц, которые могут в них существовать. Связь между частицами и вакуумом подобна связи звуковых волн с веществом, по которому они распространяются: в разных материалах скорость звука неодинакова. Мы живем в очень низкоэнергетическом вакууме, и долгое время физики считали, что энергия нашего вакуума в точности равна нулю. Однако недавно наблюдения показали, что он обладает немного отличной от нуля энергией (она получила название темной энергии).

Распад ложного вакуума 
Компьютерная модель вечной инфляции. Ложный вакуум (желтый) расширяется вдвое каждые 10-33 секунд. В областях, где он распался (синие), образовались вселенные, подобные нашей. На границах происходит «большой взрыв». 
Фото: А. Виленкин

Современные теории элементарных частиц предсказывают, что помимо нашего вакуума существует ряд других, высокоэнергетических вакуумов, называемых ложными. Наряду с очень высокой энергией ложный вакуум характеризуется большим отрицательным давлением, которое называют натяжением. Это то же самое, что растянуть кусок резины: появляется натяжение — сила, направленная внутрь, которая заставляет резину сжиматься.
Но самое странное свойство ложного вакуума — это его отталкивающая гравитация. Согласно общей теории относительности Эйнштейна гравитационные силы вызываются не только массой (то есть энергией), но также и давлением. Положительное давление вызывает гравитационное притяжение, а отрицательное ведет к отталкиванию. В случае вакуума отталкивающее действие давления превосходит притягивающую силу, связанную с его энергией, и в сумме получается отталкивание. И чем выше энергия вакуума, тем оно сильнее.
А еще ложный вакуум нестабилен и обычно очень быстро распадается, превращаясь в низкоэнергетический вакуум. Избыток энергии идет на порождение огненного сгустка элементарных частиц. Тут важно подчеркнуть, что Алан Гут не изобретал ложный вакуум со столь странными свойствами специально для своей теории. Его существование следует из физики элементарных частиц.
Гут просто предположил, что в самом начале истории Вселенной пространство находилось в состоянии ложного вакуума. Почему так случилось? Хороший вопрос, и тут есть что сказать, но мы вернемся к этому вопросу в конце статьи. А пока предположим вслед за Гутом, что молодая Вселенная была заполнена ложным вакуумом. В таком случае вызываемая им отталкивающая гравитация привела бы к очень быстрому ускоряющемуся расширению Вселенной. При таком типе расширения, который Гут назвал инфляцией, существует характерное время удвоения, за которое размер Вселенной увеличивается в два раза. Это похоже на инфляцию в экономике: если ее темпы постоянны, то цены удваиваются, скажем, за 10 лет. Космологическая инфляция идет намного быстрее, с такой скоростью, что за малую долю секунды крошечная область поперечником меньше атома раздувается до размеров, превышающих наблюдаемую сегодня часть Вселенной.
Поскольку ложный вакуум нестабилен, он в итоге распадется, порождая огненный сгусток, и на этом инфляция заканчивается. Распад ложного вакуума играет в этой теории роль Большого взрыва. С этого момента Вселенная развивается в соответствии с представлениями стандартной космологии Большого взрыва.

От умозрения к теории

Теория инфляции естественным образом объясняет особенности начального состояния, которые прежде казались такими загадочными. Высокая температура возникает из-за высокой энергии ложного вакуума. Расширение связано с отталкивающей гравитацией, которая заставляет ложный вакуум расширяться, а огненный сгусток продолжает расширяться по инерции. Вселенная однородна потому, что ложный вакуум везде имеет строго одинаковую плотность энергии (за исключением малых неоднородностей, которые связаны с квантовыми флуктуациями в ложном вакууме).
Когда теория инфляции впервые была обнародована, ее восприняли лишь как умозрительную гипотезу. Но теперь, спустя 28 лет, она получила впечатляющие наблюдательные подтверждения, большинство из которых связано с космическим фоновым излучением. Спутник WMAP построил карту интенсивности излучения для всего неба и обнаружил, что видимый на ней пятнистый узор находится в безупречном согласии с теорией.
Есть и еще одно предсказание инфляции, состоящее в том, что Вселенная должна быть почти плоской. Согласно общей теории относительности Эйнштейна пространство может быть искривлено, однако теория инфляции предсказывает, что наблюдаемая нами область Вселенной должна с высокой точностью описываться плоской, евклидовой, геометрией. Вообразите искривленную поверхность сферы.
Теперь мысленно увеличьте эту поверхность в огромное число раз. Это как раз то, что случилось со Вселенной во время инфляции. Нам видна лишь крошечная часть этой огромной сферы. И она кажется плоской точно так же, как Земля, когда мы рассматриваем небольшой ее участок. То, что геометрия Вселенной плоская, было проверено путем измерения углов гигантского треугольника размером почти до космического горизонта. Их сумма составила 180 градусов, как и должно быть при плоской, евклидовой, геометрии.
Теперь, когда данные, полученные в наблюдаемой нами области Вселенной, подтвердили теорию инфляции, можно в какой-то степени доверять тому, что она говорит нам о регионах, недоступных для наблюдения. Это возвращает нас к вопросу, с которого мы начали: что лежит за нашим космическим горизонтом?

С появлением теории инфляции Большой взрыв перестал быть единственным уникальным событием. Согласно ей вселенные возникают и расширяются, как пузырьки в бокале шампанского. И таких «бокалов» может быть множество. Фото слева: SPL/EAST NEWS, справа: FOODFOLIO/EAST NEWS

Мир бесконечных двойников

Ответ, который дает теория, довольно неожиданный: хотя в нашей части космоса инфляция закончилась, во Вселенной в целом она продолжается. То там, то здесь в ее толще случаются «большие взрывы», в которых распадается ложный вакуум и возникает область космоса, подобная нашей. Но инфляция никогда не закончится полностью, во всей Вселенной. Дело в том, что распад вакуума — вероятностный процесс, и в разных областях он случается в разное время. Выходит, Большой взрыв не был уникальным событием в нашем прошлом. Множество «взрывов» случилось прежде и несчетное число еще произойдет в будущем. Этот никогда не кончающийся процесс называется вечной инфляцией.
Можно попробовать представить, как бы выглядела инфлирующая Вселенная, если взглянуть на нее со стороны. Пространство было бы заполнено ложным вакуумом и очень быстро расширялось во все стороны. Распад ложного вакуума похож на закипание воды. То там, то здесь спонтанно возникают пузыри низкоэнергетического вакуума. Едва зародившись, пузыри начинают расширяться со скоростью света. Но они очень редко сталкиваются, поскольку пространство между ними расширяется еще быстрее, образуя место для все новых и новых пузырей. Мы живем в одном из них и видим только малую его часть.
К сожалению, путешествия в другие пузыри невозможны. Даже забравшись в космический корабль и двигаясь почти со скоростью света, нам не угнаться за расширяющимися границами нашего пузыря. Так что мы являемся его пленниками. С практической точки зрения каждый пузырь является самодостаточной отдельной вселенной, у которой нет связи с другими пузырями. В ходе вечной инфляции порождается бесконечное число таких пузырей-вселенных.
Но если нельзя добраться до других пузырей-вселенных, как же убедиться, что они действительно существуют? Одна из впечатляющих возможностей — наблюдение за столкновением пузырей. Если бы другой пузырь ударился в наш, это оказало бы заметное воздействие на наблюдаемое космическое фоновое излучение. Проблема, однако, в том, что столкновения пузырей очень редки, и не факт, что такое событие случалось в пределах нашего горизонта.
Удивительный вывод следует из этой картины мира: поскольку число вселенных-пузырей бесконечно и каждая из них неограниченно расширяется, в них будет содержаться бесконечное число областей размером с наш горизонт. У каждой такой области будет своя история. Под «историей» имеется в виду все, что случилось, вплоть до мельчайших событий, таких как столкновение двух атомов. Ключевой момент состоит в том, что число различных историй, которые могут иметь место, — конечно. Как это возможно? Например, я могу подвинуть свой стул на один сантиметр, на полсантиметра, на четверть и так далее: кажется, что уже здесь таится неограниченное число историй, поскольку я могу сдвинуть стул бесконечным числом разных способов на сколь угодно малое расстояние. Однако из-за квантовой неопределенности слишком близкие друг к другу истории принципиально невозможно различить. Таким образом, квантовая механика говорит нам, что число различных историй конечно. С момента Большого взрыва для наблюдаемой нами области оно составляет примерно 10, возведенное в степень 10150. Это невообразимо большое число, но важно подчеркнуть, что оно не бесконечно.
Итак, ограниченное количество историй разворачивается в бесконечном числе областей. Неизбежен вывод, что каждая история повторяется бесконечное число раз. В частности, существует бесконечное число земель с такими же историями, как у нашей. Это значит, что десятки ваших дублей сейчас читают эту фразу. Должны существовать также области, истории которых в чем-то отличаются, реализуя все возможные вариации. Например, есть области, в которых изменена лишь кличка вашей собаки, а есть другие, где по Земле до сих пор ходят динозавры. Хотя, конечно, в большинстве областей нет ничего похожего на нашу Землю: ведь куда больше способов отличаться от нашего космоса, чем быть на него похожим. Эта картина может показаться несколько угнетающей, но ее очень трудно избежать, если признается теория инфляции.

Пузыри мультиверса

До сих пор мы предполагали, что другие вселенные-пузыри похожи между собой по своим физическим свойствам. Но это необязательно должно быть так. Свойства нашего мира определяются набором чисел, называемых фундаментальными постоянными. Среди них Ньютонова гравитационная постоянная, массы элементарных частиц, их электрические заряды и тому подобное. Всего существует около 30 таких констант, и возникает вполне естественный вопрос: почему у них именно такие значения, которые есть? Долгое время физики мечтали, что однажды смогут вывести значения констант из некой фундаментальной теории. Но существенного прогресса на этом пути достигнуто не было.
Если выписать на листок бумаги значения известных фундаментальных постоянных, они покажутся совершенно случайными. Некоторые из них очень малы, другие велики, и за этим набором чисел не просматривается никакого порядка. Однако в них все же была замечена система, хотя и несколько иного рода, чем надеялись обнаружить физики. Значения констант, похоже, тщательно «подобраны» для обеспечения нашего существования. Это наблюдение получило название антропного принципа. Константы будто специально тонко настроены Творцом, чтобы создать подходящую для жизни Вселенную — это как раз то, о чем говорят нам сторонники учения о разумном замысле.
Но существует иная возможность, рисующая совсем другой образ Творца: он произвольным образом порождает множество вселенных, и чисто случайно некоторые из них оказываются пригодными для жизни. Появившиеся в таких редких вселенных разумные наблюдатели обнаруживают чудесную тонкую настройку констант. В этой картине мира, называемой Мультиверсом, большинство пузырей бесплодно, но в них нет никого, кто мог бы на это пожаловаться.
Но как проверить концепцию Мультиверса? Прямые наблюдения ничего не дадут, поскольку мы не можем путешествовать в другие пузыри. Можно, однако, как в криминальном расследовании, найти косвенные улики. Если константы изменяются от одной вселенной к другой, их значения у нас нельзя точно предсказать, но можно сделать вероятностные предсказания. Можно спросить: какие значения обнаружит среднестатистический наблюдатель? Это аналогично попытке предсказать рост первого встречного человека на улице. Вряд ли он окажется гигантом или карликом, поэтому если дать прогноз, что его рост будет где-то около среднего, мы, как правило, не ошибемся. Аналогично и с фундаментальными постоянными: нет оснований думать, что их значения в нашей области космоса очень велики или малы, иными словами, они существенно отличаются от тех, что измерит большинство наблюдателей во Вселенной. Предположение о нашей неисключительности — это важная идея; я назвал ее принципом заурядности.
Этот подход был применен к так называемой космологической постоянной, которая характеризует плотность энергии нашего вакуума. Значение этой постоянной, полученное из астрономических наблюдений, оказалось в хорошем согласии с предсказаниями, основанными на концепции Мультиверса. Это стало первым свидетельством существования там, за горизонтом, поистине колоссальной вечно инфлирующей Вселенной. Это свидетельство, конечно, косвенное, каким только и могло быть. Но если нам посчастливится сделать еще несколько удачных предсказаний, то новую картину мира можно будет признать доказанной за пределами разумных сомнений.

Что было до большого взрыва?

А было ли у Вселенной начало? Мы описали безгранично расширяющийся космос, порождающий все новые «большие взрывы», но хотелось бы знать, всегда ли Вселенная была такой? Многие находят такую возможность весьма привлекательной, поскольку она избавляет от некоторых трудных вопросов, связанных с началом Вселенной. Когда Вселенная уже существует, ее эволюция описывается законами физики. Но как описывать ее начало? Что заставило Вселенную появиться? И кто задал ей начальные условия? Было бы весьма удобно сказать, что Вселенная всегда пребывает в состоянии вечной инфляции без конца и без начала.
Эта идея, однако, сталкивается с неожиданным препятствием. Арвинд Борд и Алан Гут доказали теорему, которая утверждает, что хотя инфляция вечна в будущем, она не может быть вечной в прошлом, а это значит, что у нее должно быть какое-то начало. И каково бы оно ни было, мы можем продолжать спрашивать: а что было до того? Получается, что один из основных вопросов космологии — с чего началась Вселенная? — так и не получил удовлетворительного ответа.
Единственный предложенный до сих пор способ обойти эту проблему бесконечной регрессии состоит в том, что Вселенная могла быть спонтанно создана из ничего. Часто говорят: ничто не может появиться из ничего. Действительно, материя обладает положительной энергией, и закон ее сохранения требует, чтобы в любом начальном состоянии энергия была такой же. Однако математический факт состоит в том, что замкнутая вселенная обладает нулевой энергией. В общей теории относительности Эйнштейна пространство может быть искривленным и замыкаться на себя подобно поверхности сферы. Если в такой замкнутой вселенной двигаться все время в одну сторону, то в конце концов вернешься туда, откуда стартовал, — точно так же, как возвращаешься в исходную точку, обойдя вокруг Земли. Энергия материи положительна, но энергия гравитации — отрицательна, и можно строго доказать, что в замкнутой вселенной их вклады в точности компенсируют друг друга, так что полная энергия замкнутой вселенной равна нулю. Другая сохраняющаяся величина — электрический заряд. И тут тоже оказывается, что полный заряд замкнутой вселенной должен быть нулевым.
Если все сохраняющиеся величины в замкнутой вселенной равны нулю, то ничто не препятствует ее спонтанному появлению из ничего. В квантовой механике любой процесс, который не запрещен строгими законами сохранения, с некоторой вероятностью будет происходить. А значит, замкнутые вселенные должны появляться из ничего подобно пузырькам в бокале шампанского. Эти новорожденные вселенные могут быть разного размера и заполнены разными типами вакуума. Анализ показывает, что наиболее вероятные вселенные имеют минимальные начальные размеры и наивысшую энергию вакуума. Стоит появиться такой вселенной, как немедленно под влиянием высокой энергии вакуума она начинает расширяться. Именно так и начинается история вечной инфляции.

Космология Блаженного Августина

Следует оговориться, что аналогия между возникающими из ничего вселенными и пузырьками шампанского не совсем точна. Пузырьки рождаются в жидкости, а у вселенной нет никакого окружающего пространства. Зародившаяся замкнутая вселенная — это и есть все имеющееся пространство. До ее появления никакого пространства не существует, как не существует и времени. В общей теории относительности пространство и время связаны в единую сущность, называемую «пространством-временем», и время начинает свой отсчет лишь после того, как появляется Вселенная.
Нечто подобное много столетий назад было описано Августином Блаженным. Он пытался понять, что делал Бог до того, как создал небеса и землю. Свои размышления над этой проблемой Августин изложил в замечательной книге «Исповедь». Вывод, к которому он в итоге пришел, состоит в том, что Бог должен был создать время вместе со Вселенной. До того не было времени, а значит, бессмысленно спрашивать, что было раньше. Это очень похоже на ответ, который дает современная космология.
Вы можете спросить: что заставило Вселенную появиться из ничего? Как это ни удивительно, никакой причины не требуется. Если взять радиоактивный атом, он распадется, и квантовая механика предсказывает вероятность его распада за определенный интервал времени, скажем, за минуту. Но если спросить, почему атом распался именно в данный конкретный момент, а не в другой, то ответ будет состоять в том, что не было никакой причины: этот процесс совершенно случаен. Аналогично не требуется причины и для квантового создания Вселенной.
Законы физики, которые описывают квантовое рождение Вселенной, — те же самые, что описывают ее последующую эволюцию. Из этого, по-видимому, следует, что законы существовали в некотором смысле прежде, чем возникла Вселенная. Иными словами, законы, похоже, не являются описанием Вселенной, а обладают неким платоновским существованием, помимо самой Вселенной. Мы пока не знаем, как это понимать.





Об авторе
Александр Виленкин — директор Института космологии в Университете Тафтса (Бостон, штат Массачусетс). Он окончил Харьковский университет в 1971 году, в 1976-м эмигрировал из СССР, в 1978-м стал профессором Университета Тафтса. Виленкин — один из ведущих современных космологов, автор концепции вечной инфляции, появившейся как развитие инфляционной космологии Алана Гута, совместно с которым написал ряд научных работ. Известна полемика между Александром Виленкиным и Стивеном Хокингом по вопросу о том, как именно случилось квантовое рождение Вселенной. Виленкин является сторонником антропного принципа, согласно которому существует множество вселенных и лишь немногие из них пригодны для жизни разумных обитателей. Причем Виленкин считает, что из антропного принципа можно получить нетривиальные предсказания, позволяющие подтвердить существование недоступных наблюдению вселенных. Бурные дискуссии вызвала научно-популярная книга Александра Виленкина «Мир множества миров: в поисках других вселенных», опубликованная на английском языке. В этом году она выходит на русском.

Вредные мутации в геноме усиливают влияние друг друга



Международная группа, включающая ученых из России, США и Голландии, показала, что влияние вредных мутаций на приспособленность зависит от присутствия в геноме других вредных мутаций. Оказалось, что чем больше вредных мутаций уже присутствует в геноме, тем вреднее последующие мутации. Такое взаимодействие между мутациями позволяет отрицательному отбору эффективнее удалять вредные аллели из популяции. Эти результаты могут отчасти объяснить, почему популяции живых существ не вымирают, несмотря на высокую скорость возникновения вредных генетических изменений.
В геномах живых существ постоянно возникают мутации — изменения в последовательности ДНК. Часть возникающих мутаций вредные, то есть понижают приспособленность индивида, в геноме которого присутствует данная мутация. Приспособленность (см. также Fitness) — это вклад, который данная особь внесет в генофонд следующего поколения. То есть это понятие описывает то, насколько организм успешен с точки зрения естественного отбора. Поэтому в качестве характеристики приспособленности организма эволюционные биологи часто выбирают количество детей у данной особи. Таким образом, влияние вредной мутации на приспособленность можно представлять как снижение вероятности того, что носитель этой мутации оставит потомство.

Парадокс «мутационного груза»

По последним данным в среднем каждый новорожденный несет в геноме около 70 новых мутаций и как минимум 10% из них являются вредными (см. S. Besenbacher et al., 2015. Novel variation and de novo mutation rates in population-wide de novo assembled Danish trios). Но теоретические оценки того, насколько накапливающиеся с каждым новым поколением мутации должны снижать приспособленность, несовместимы с существованием человеческой популяции — это так называемый парадокс «мутационного груза».
Для долгосрочного выживания вида естественный отбор должен увеличивать среднюю приспособленность особей в популяции по крайней мере с той же скоростью, с которой ее понижают появляющиеся в каждом поколении мутации. Вид эволюционно «стабилен», если существует равновесие между возникновением новых вредных мутаций и их удалением в результате действия естественного отбора. Если этого по каким-то причинам не происходит, вредные мутации быстро накапливаются, что приводит к вымиранию вида.
Чем больше вредных мутаций возникает в геноме за одно поколение, тем больше «генетических смертей» должно произойти для того, чтобы восстановить среднюю приспособленность популяции. «Генетическая смерть» происходит, если особь не оставляет жизнеспособных потомков, и, таким образом, не передает свои гены следующему поколению. В результате вредные мутации, появившиеся в геноме этой особи, тоже не достанутся потомкам.
Зная, сколько вредных аллелей в среднем появляется в геноме каждое поколение, мы можем оценить, насколько от этого снижается средняя приспособленность популяции. Эту оценку можно соотнести с долей популяции, которая должна была бы не оставить потомков в результате действия отрицательного отбора.
Полученные таким образом предсказания говорят о том, что, если бы отрицательный отбор действовал на каждую вредную мутацию по отдельности, более 80% людей не должны были бы оставлять жизнеспособное потомство (см. A. Eyre-Walker, P. D. Keightley, 1999. High genomic deleterious mutation rates in hominids).
Очевидно, это не соответствует тому, что мы видим. Такое расхождение между теорией и действительностью может указывать на существование дополнительных механизмов, позволяющих естественному отбору более эффективно удалять из популяций вредные мутации.

Рис. 2. График, показывающий зависимость падения приспособленности (Fitness) от количества вредных мутаций в геноме (Genome contamination) в отсутствие взаимодействий между мутациями (a) и в случае разных сценариев взаимодействия между ними: мутации усиливают влияние друг друга (bc); мутации ослабляют влияние друг друга (d). Рисунок из статьи A. S. Kondrashov, 1988. Deleterious mutations and the evolution of sexual reproduction

Возможные типы взаимодействий между мутациями

Теоретические предсказания, из которых вытекает парадокс «мутационного груза», основываются на предположении о том, что мутации влияют на приспособленность независимо друг от друга. Но это совершенно необязательно так. В последние годы было описано много примеров взаимодействия между разными мутациями. Ситуация, в которой влияние одной мутации зависит от присутствия другой мутации, называется эпистазом (epistasis).
Если говорить о вредных мутациях в терминах их влияния на приспособленность, можно представить себе три сценария (см. рис. 1):
    1) вредные мутации не взаимодействуют друг с другом и по отдельности вносят вклад в снижение приспособленности;
    2) вредные мутации ослабляют влияние друг друга;
    3) мутации усиливают влияние друг друга.
Два последних сценария соответствуют разным видам эпистаза. Если вредные мутации ослабляют друг друга (сценарий 2), то их совокупное влияние на приспособленность должно быть меньше того, что мы ожидаем увидеть, исходя из их индивидуальных эффектов. В этом случае приспособленность с увеличением числа вредных вариантов в геноме падает медленнее, чем в случае отсутствия эпистаза (линия d на рис. 1).
И, наоборот, если мутация оказывается вреднее в контексте других мутаций (сценарий 3), то падение приспособленности с ростом числа вредных вариантов ускоряется (линии b и c на рис. 1). В этом сценарии особи, несущие большое количество вредных аллелей, были бы непропорционально менее приспособлены и быстро удалялись бы из популяции, что позволяло бы за одну «генетическую смерть» избавиться сразу от значительного числа вредных мутаций.
Таким образом, взаимное усиление эффектов вредных мутаций могло бы разрешить парадокс «мутационного груза». Однако вплоть до последнего времени не было понятно, насколько распространены взаимодействия между отдельными мутациями на геномном уровне и какой тип взаимодействий чаще всего встречается среди вредных аллелей.

Поиск возможных взаимодействий между вредными мутациями через изучение распределения числа вредных мутаций в популяции

Чтобы ответить на вопрос о существовании взаимодействий между вредными мутациями и характере этих взаимодействий, в новой работе, результаты которой были недавно опубликованы в журнале Science, ученые проанализировали распределение числа вредных аллелей на геном в популяциях человека и плодовой мушки Drosophila melanogaster.
Дело в том, что форма распределения числа вредных мутаций на геном в популяции должна зависеть от существования и типа взаимодействий между мутациями. И по форме этого распределения можно судить о том, какой вид взаимодействий встречается чаще всего.
Одним из способов описания распределения, может быть сравнение дисперсии распределения с его средним. Дисперсия распределения — это мера разброса значений, встречающихся в распределении, относительно среднего. При одном и том же среднем, распределение с более высокой дисперсией «шире», чем распределение с низкой дисперсией. Чем ниже дисперсия, тем распределение уже, а значения распределения сильнее сосредоточены вокруг среднего.
В простейшем случае отсутствия эпистаза распределение числа вредных мутаций на геном в популяции должно иметь вид распределения Пуассона. Чтобы понять, почему это так, можно представить себе, что мы независимо разбрасываем мутации в случайные позиции генома. Вероятность того, что мутация попадет в конкретную позицию генома, очень мала, а мутации происходят независимо друг от друга. Тогда вероятность того, что в данном геноме («в данной серии испытаний») окажется N мутаций, можно вычислить по формуле Пуассона с параметром λ равным среднему количеству мутаций на геном. Из свойств распределения Пуассона вытекает, что его дисперсия равна среднему.
Теперь представим, что мутации усиливают вредные эффекты друг друга. В этом случае отрицательный отбор будет быстрее очищать популяцию от особей, несущих большое число вредных мутаций. Это должно приводить к тому, что популяция будет обеднена геномами с большим количеством вредных аллелей. И если мы посмотрим на распределение числа вредных мутаций на геном в этом случае и сравним его с «нулевым» распределением, которое бы ожидалось в отсутствие эпистаза, то это распределение должно быть обрезано справа (рис. 2, сравните серую и красную гистограммы). В статистических терминах это означает, что дисперсия такого распределения должна быть меньше среднего. Эта идея и лежит в основе обсуждаемой статьи.

Рис. 3. Сравнение ожидаемой формы распределения числа вредных мутаций на геном в популяции в отсутствие взаимодействия между вредными мутациями (мутации независимы друг от друга — нулевая модель, серый), в случае «усиливающих взаимодействий» (красный) и в случае ослабляющих взаимодействий или существования других причин, увеличивающих дисперсию распределения (синий). В случае усиливающих взаимодействий доля особей с большим числом вредных мутаций меньше, чем в нулевой модели. «Недопредставленность» особей с большим количеством вредных мутаций выражается в том, что меньшая часть популяции находится в правой части («хвосте») распределения. В результате распределение в случае усиливающих взаимодействий смещено влево относительно распределения в случае отсутствия таких взаимодействий. Обратите внимание на более тяжелый хвост серого распределения по сравнению с красным. Рисунок из обсуждаемой статьи в Science

«Усиливающие» взаимодействия между вредными мутациями в популяциях человека и плодовой мушки

Авторы проанализировали распределение числа вредных мутаций на геном в нескольких популяциях человека и плодовой мушки D. melanogaster. Для этого были использованы данные по полногеномному секвенированию (см. Whole genome sequencing) особей из этих популяций.
В работе рассматривались только мутации, затрагивающие белок-кодирующие гены, поскольку такие мутации можно относительно просто разделить на классы по их влиянию на функцию белка. Мутации, попадающие в белок-кодирующие участки генома, делятся на синонимические, несинонимические и нонсенс-мутации. Синонимические мутации не приводят к замене аминокислоты и считаются наиболее нейтральным классом мутаций. Вызывающие замену аминокислотного остатка в белке несинонимические мутации в среднем гораздо более вредны. Но значительно более вредный класс мутаций — нонсенс-мутации, самые редкие в этой классификации. Мутации этой группы приводят к появлению преждевременного стоп-кодона в последовательности гена, что вызывает досрочное прекращение трансляции белка и выражается в отсутствии функционального белкового продукта.
Чтобы сосредоточиться на анализе наиболее вредных аллелей, авторы аппроксимировали количество вредных мутаций в геноме каждой особи числом нонсенс-мутаций. Затем для каждой выборки было получено распределение количества нонсенс-аллелей на геном и рассчитаны среднее и дисперсия этого распределения. Было показано, что дисперсия распределения числа нонсенс-аллелей на геном во всех рассмотренных выборках меньше, чем его среднее (рис. 3, 4). То есть распределение числа нонсенс-аллелей на геном более узкое, чем распределение Пуассона с таким же средним. Или, проще говоря, мы видим меньше особей с большим количеством нонсенс-аллелей, чем ожидали бы увидеть в нулевой модели отсутствия взаимодействий между мутациями. Таким образом, для наиболее вредных мутаций, с высокой вероятностью разрушающих ген, распределение в популяциях человека и плодовой мушки соответствует картине, которая ожидается в случае «усиливающих» взаимодействий между отдельными мутациями.

Рис. 4. Распределение числа нонсенс-мутаций, синонимических и несинонимических мутаций на геном в популяции плодовой мушки D. melanogaster, наложенное на распределение Пуассона (черная линия) с соответствующим средним. Видно, что распределение числа нонсенс-мутаций более узкое по сравнению с ожидаемым распределением Пуассона (дисперсия для нонсенс-мутаций ниже ожидаемой). В то же время распределения несинонимических и синонимических мутаций характеризуются сверхдисперсией (обратите внимание на тяжелый правый хвост этих распределений). Модифицированный рисунок из дополнительных материалов к обсуждаемой статье в Science


Сужение распределения числа нонсенс-мутаций на геном — результат присутствия усиливающих взаимодействий между нонсенс-мутациями

Чтобы убедиться в том, что это наблюдение не является следствием технических артефактов, в качестве контроля рассматривали подвыборки синонимических и несинонимических мутаций c такими же популяционными частотами, как у нонсенс-мутаций.
В первом приближении нонсенс-мутации находятся под действием сильного отрицательного отбора, в то время как синонимические мутации не причиняют значительного вреда и являются, по большей части, нейтральными. Технический шум должен вносить сравнимый вклад в дисперсию как вредных нонсенс-мутаций, так и нейтральных синонимических мутаций. В то же время отрицательный отбор должен оказывать влияние на дисперсию распределения вредных нонсенс-аллелей, но не на дисперсию безвредных синонимических мутаций.
Поэтому в том случае, если «сужение» распределения числа нонсенс-мутаций связано с более эффективным отбором против особей, несущих большое число вредных аллелей, а не какими-то другими причинами, мы ожидаем увидеть контраст между нонсенс-мутациями и синонимическими мутациями. То есть ожидается, что популяция будет «обеднена» особями с большим количеством нонсенс-мутаций, но не особями с большим числом синонимических мутаций.
Поскольку синонимические мутации встречаются значительно чаще по сравнению с нонсенс-мутациями, каждая особь несет гораздо больше синонимических, чем нонсенс-мутаций. В связи с этим среднее значение распределения числа синонимических аллелей на геном в популяции гораздо выше, чем среднее значение распределения числа нонсенс-аллелей. Из-за того, что дисперсия распределения зависит от среднего распределения, мы не можем напрямую сравнивать дисперсию распределения для нонсенс-аллелей и для синонимических вариантов. Чтобы обойти эту проблему, авторы генерировали случайные выборки синонимических мутаций с такими же популяционными частотами, как у нонсенс-мутаций. У такой случайной выборки синонимических мутаций будет в точности такое же среднее, как у распределения нонсенс-аллелей. Для каждой популяции было сгенерировано 1000 выборок синонимических мутаций с такими же средними значениями, как у наблюдаемого распределения нонсенс-мутаций в данной популяции. Для каждой такой выборки рассчитывали дисперсию, что позволило получить распределение ожидаемых значений дисперсии для нонсенс-мутаций. Затем наблюдаемую дисперсию для нонсенс-мутаций сравнивали с ожидаемым распределением дисперсий, полученным на основе контрольных выборок синонимических мутаций.
Такая процедура дает возможность оценить, насколько удивительно то значение дисперсии, которое мы наблюдаем для нонсенс-мутаций, и понять, с какой вероятностью мы ожидаем увидеть такую низкую дисперсию (и такое сужение распределения) по случайным причинам.
С помощью этого анализа было показано, что распределение числа нонсенс-мутаций значимо более узкое, чем контрольные распределения синонимических и несинонимических мутаций (для которых проводили аналогичный анализ) (рис. 4). Это позволило подтвердить «отборную» природу наблюдаемого феномена.

Рис. 5. Отношение дисперсии к среднему для распределения числа нонсенс-аллелей на геном в популяциях человека (GoNL, ADNI, MinE) и плодовой мушки D. melanogaster(DPGP3). Красная линия соответствует наблюдаемому значению отношения дисперсии к среднему для распределения нонсенс-аллелей в данной популяции. В качестве контроля приведены ожидаемые распределения для отношения дисперсии к среднему, полученные путем генерации случайных выборок синонимических (синий) и несинонимических (зеленый) мутаций c таким же распределением популяционных частот, как у нонсенс-мутаций. Видно, что в большинстве случаев дисперсия для нонсенс-мутаций значимо ниже ожидаемой по случайным причинам. Рисунок из обсуждаемой статьи в Science

Усиливающие взаимодействия существуют и между несинонимическими мутациями

Кроме того, оказалось, что дисперсия распределения числа несинонимических и синонимических мутаций на геном выше, чем ожидается в нулевой модели (рис. 3, 4). Среди причин, вызывающих повышение дисперсии, могут быть, например, присутствие популяционной структуры (см. Population stratification) в данных или технический шум. В симуляциях и с помощью различных статистических тестов было подтверждено, что повышение дисперсии для синонимических и несинонимических мутаций действительно может быть объяснено популяционной структурой и различными техническими артефактами.
Популяционная структура и технический шум в симуляциях всегда вызывали «повышение» дисперсии, но ни в одном из рассмотренных сценариев не приводили к ее понижению. То есть сужение распределения числа нонсенс-мутаций, вероятнее всего, не может быть объяснено техническими артефактами.
При этом, если контролировать среднее число мутаций, то дисперсия для несинонимических мутаций оказывается выше, чем для нонсенс-мутаций, но ниже, чем для синонимических (рис. 4). То есть мы наблюдаем понижение дисперсии (сужение распределения) с увеличением «вредности» мутаций.
Такое наблюдение указывает на вероятное присутствие «усиливающих» взаимодействий не только среди наиболее вредных нонсенс-аллелей, но и среди гораздо более часто встречающихся несинонимических мутаций. Тем не менее «сверхдисперсия» распределения числа несинонимических мутаций по сравнению с нулевым ожиданием не позволяла сделать такое утверждение.
Авторы предположили, что если эпистатические взаимодействия между несинонимическими мутациями существуют, то они должны быть наиболее сильно выражены среди подмножества самых вредных несинонимических мутаций. В качестве набора несинонимических мутаций, вероятно, оказывающих значительное влияние на приспособленность, были выбраны несинонимические мутации, попадающие в наиболее важные для существования организма гены. И, действительно, если рассматривать только несинонимические мутации в необходимых для организма генах, то в популяциях человека и плодовой мушки наблюдается меньше особей, несущих большое число таких мутаций, чем ожидается при отсутствии «усиливающего» эпистаза.
Кроме того, для плодовой мушки был проведен следующий, более общий анализ. Все гены были разбиты на несколько групп в соответствии со скоростью белковой эволюции. На наиболее медленно эволюционирующие белки действует самый сильный отрицательный отбор. Это значит, что изменения аминокислотной последовательности таких белков, вероятно, вносят большой вклад в снижение приспособленности. Оказалось, что чем ниже скорость эволюции группы генов (то есть, чем гены важнее), тем меньше дисперсия количества несинонимических мутаций в этой группе. При этом подобная зависимость от «степени необходимости» генов отсутствует для синонимических мутаций. По всей видимости этот результат указывает на то, что «усиливающие» взаимодействия сильнее выражены среди более вредных мутаций.
Таким образом, в обсуждаемой работе было показано, что в популяциях человека и плодовой мушки недопредставлены особи с большим количеством вредных мутаций. Наблюдаемое явление, вероятнее всего, является следствием «усиливающих» эпистатических взаимодействий между вредными мутациями. Существование таких взаимодействий представляет собой вероятный механизм, позволяющий отрицательному отбору эффективнее очищать популяции от вредных аллелей, и может служить объяснением для «парадокса мутационного груза».

Синергический эпистаз и половое размножение

Помимо того, что описанные результаты помогают лучше понять, как популяции живых существ противостоят постоянному притоку вредных генетических изменений, они важны и в свете другого вопроса в эволюционной биологии — вопроса о причинах существования полового размножения.
Несмотря на то, что половое размножение преобладает среди эукариот, а переходы к бесполому размножению обычно приводят к быстрому вымиранию группы организмов, эволюционные биологи до сих пор спорят о том, почему же половое размножение необходимо для долгосрочного эволюционного успеха вида.
Среди получивших широкую поддержку теорий есть гипотеза о том, что в случае полового размножения рекомбинация обеспечивает более эффективный отбор против вредных мутаций. При бесполом размножении мутация всегда остается в том геномном контексте, в котором она произошла. Рекомбинация, происходящая при половом размножении, разрушает сцепление между мутациями и создает новые комбинации мутаций. В таком случае появляется возможность «собрать» много вредных мутаций в одном геноме и за одну «генетическую смерть» значительно понизить «груз вредных мутаций» в популяции.
По сравнению с половой популяцией, в которой рекомбинация каждое поколение расширяет распределение числа вредных мутаций на геном, в бесполой популяции меньше особей как с очень маленьким, так и с очень большим числом мутаций. То есть рекомбинация увеличивает дисперсию распределения числа мутаций на геном, в результате чего в популяции появляются как особи, несущие очень мало вредных мутаций, так и особи, несущие много вредных мутаций (A. S. Kondrashov, 1988. Deleterious mutations and the evolution of sexual reproduction). Среднее число вредных мутаций при этом не меняется.
«Усиливающие» взаимодействия между вредными мутациями обеспечивают наиболее эффективный отбор против особей с самыми «загрязненными» мутациями геномами, а рекомбинация создает «избыток» таких особей. Получается, что рекомбинация каждое поколение «расширяет» распределение числа вредных мутаций на геном, что позволяет отрицательному отбору затем более эффективно его «сузить».
Благодаря рекомбинации каждое поколение в популяции появляются особи, в геномах которых «сосредоточено» большое число вредных мутаций. В присутствии «усиливающих» взаимодействий это позволяет за меньшее по сравнению с бесполой популяцией число «генетических смертей» удалить то же самое количество вредных мутаций и делает существование рекомбинации выгодным.
Таким образом, присутствие «усиливающих» взаимодействий между вредными мутациями, которое было показано в обсуждаемой работе, можно рассматривать как весомый аргумент в поддержку гипотезы о необходимости полового размножения для эффективного отбора против вредных мутаций.
Источник: M. Sohail, O. A. Vakhrusheva, J. H. Sul, S. L. Pulit, L. C. Francioli, Genome of the Netherlands Consortium, Alzheimer’s Disease Neuroimaging Initiative, L. H. van den Berg, J. H. Veldink, P. I. W. de Bakker, G. A. Bazykin, A. S. Kondrashov, S. R. Sunyaev. Negative selection in humans and fruit flies involves synergistic epistasis // Science. 2017. V. 356. P. 539–542. DOI: 10.1126/science.aah5238.
См. также:
1) A. S. Kondrashov. Contamination of the genome by very slightly deleterious mutations: why have we not died 100 times over? // Journal of Theoretical Biology. 1995. V. 175. P. 583–594.
2) Y. Lesecque, P. D. Keightley, A. Eyre-Walker. A Resolution of the Mutation Load Paradox in Humans // Genetics. 2012. V. 191. P. 1321–1330.
Ольга Вахрушева