пятница, 24 января 2020 г.

5 сервисов для создания ментальных карт

Рассмотрим веб-сервисы и программы для создания ментальных карт. В публикации расскажу о инструментах, которыми пользуюсь сама  и которые использовала  в учебной работе.


Что такое ментальные карты

Ментальные карты называют по-разному. Можно встретить такие названия, как  «майндмэп», «интелект-карты», «диаграмма связей» или «карты ума». Возможно, что есть и еще, пишите в комментариях, какие знаете.
Ментальная карта — это техника визуализации мышления.
Строятся карты следующим образом: в центре карты размещается основная идея, а вокруг нее располагаются ключевые моменты/свойства, связанные с идеей. И каждый ключевой момент далее разбивается на несколько пунктов.
Использовать ментальные карты в учебной работе можно  и нужно. Более того, с их помощью можно повысить эффективность обучения, потому что ты вооружаете учениками полезными стратегиями. О том, как это сделать, я рассказываю на вебинаре «Повышение эффективности обучения через использование ментальных карт«.

Сервисы для создания ментальных карт

XMind

XMind — инструмент для мозгового штурма и создания ментальных карт.  Это программное обеспечение, которое устанавливается на компьютер. Можно установить соответствующее приложение на смартфон.
Последние 3 года я пользуюсь именно этим инструментом для создания ментальных карт. Все созданные карты храню в либо в формате этого программного обеспечения (если я их систематически редактирую), либо в виде картинок (когда карта полностью готова).
Функционал бесплатной версии:
✔︎ Большой выбор шаблонов.
✔︎ Добавление маркеров и стикеров.
✔︎ Добавление ссылки на веб-ресурс.
✔︎ Добавление картинки.
✔︎ Экспорт карты в виде картинки.
✔︎ Прикрепление файла.


Bubbl.us

Bubbl.us – онлайн сервис для создания ментальных карт и проведения мозгового штурма. Bubbl.us я активно использую, работая на  курсах с учителями, так как карту можно начать создавать даже без аккаунта. По окончании работы ее можно сохранить в виде картинки. Если есть желание продолжить редактирование карты, то стоит сделать аккаунт.
В бесплатной версии:
✔︎ Можно создать до трех ментальных карт.
✔︎ Сохранение готовой карты в виде картинки.
✔︎ Создание аккаунта через Google или Facebook.
✔︎ Предоставление доступа к карте.

MindMeister

С сервиса MindMeister и началось мое знакомство с созданием ментальных карт в цифровом виде. У него широкий функционал и понятный интерфейс. У большинства моих знакомых в использовании именно этот сервис. В совместной работе с коллегой над картой использую именно его.
Для учащихся и педагогов сервис имеет специальное предложение.
В бесплатной версии:
✔︎ Можно создать до трех ментальных карт.
✔︎ Большой выбор шаблонов.
✔︎ Добавление маркеров и стикеров.
✔︎ Добавление ссылки на веб-ресурс.
✔︎ Добавление картинки.
✔︎ Экспорт карты в виде картинки.
✔︎ Возможность совместного редактирования.


Popplet

Popplet использовала в работе с учениками (7 — 10 класс), если ребятам требовалось работать над одной ментальной картой в парах или группах. Карты создаются очень просто, и их можно совместно синхронно редактировать. Единственный недостаток  popplet:  он может выкинуть из аккаунта в процессе создания карты. Случается это редко, но бывает в самое неподходящее время. Карта сохраняется, но надо снова входить в аккаунт, что ученикам не всегда нравится :).
Возможности бесплатной версии:
✔︎ Можно создать до 10 ментальных карт.
✔︎ Добавление картинок.
✔︎ Экспорт карты в виде картинки.
✔︎ Редактирование цвета фона и самой карты.
✔︎ Добавление объектов, нарисованных от руки.
✔︎ Возможность совместного редактирования.

Mindomo

Mindomo  нравился моим учащимся, потому что созданную карту удобно превратить в презентацию. Каждую часть карты можно выделить отдельным слайдом и затем демонстрировать. Сама этим сервисом не пользуюсь.
Возможности бесплатной версии:
✔︎ Можно создать до трех ментальных карт.
✔︎ Большой выбор шаблонов.
✔︎ Редактирование цвета фона.
✔︎ Добавление картинки.
✔︎ Добавление ссылки на веб-ресурс.
✔︎ Возможность совместного редактирования.
https://bit.ly/2vkZ4Qd

Одиннадцатилетняя девочка установила мировой рекорд


Одиннадцатилетняя девочка Рия Паладия из Индии установила мировой рекорд по выполнению одного из самых трудных упражнений йоги за минуту из положения стоя. Рия выполняет позу йоги 21 раз в минуту, установив мировой рекорд, который ранее составлял 15.

воскресенье, 5 января 2020 г.

Наука в вашем кармане. История аккумуляторных батарей, отмеченных Нобелевской премией по химии 2019


Технологией, разработанной тремя ученым, пользуемся мы все, она всего за пару десятилетий изменила мир до неузнаваемости

Третий день Нобелевской недели, который в этом году выпал на 9 октября, по традиции – день химии. Именно в этой области сегодня присудили высшую научную награду. Ее в равных частях разделили американский ученый немецкого происхождения Джон Гуденаф, его соотечественник Стэнли Уиттингем и японский химик Акира Ёсино, которые создали технологию, изменившую мир до неузнаваемости – литий-ионную аккумуляторную батарею. Рассказываем об истории этого устройства и вкладе каждого из ученых словами самого Нобелевского комитета.


Нобелевская премия за 2019 год в области химии присуждена Джону Б. Гуденафу, М. Стэнли Уиттингему и Акире Ёсино за их вклад в разработку литий-ионных батарей. Эти перезаряжаемые аккумуляторные батареи стали основой бурного развития беспроводной электроники – мобильные телефоны и ноутбуки вошли в нашу жизнь именно благодаря им. Технология, поэтапно созданная трема выдающимися химиками, также открывает путь к миру, свободному от ископаемого топлива, поскольку теперь аккумуляторы используются повсеместно – от мощных электромобилей до накопления энергии, добытой из возобновляемых источников.

Уникальный элемент, открывший дорогу в будущее науки

Лежащий в основе разработки литий – один из древнейших химических элементов во вселенной. Он возник сразу же после Большого взрыва (его историю исследовал лауреат этого года в области физики Джеймс Пиблс). Человечество познакомилось с литием в 1817 году, когда шведские химики Иоганн Аугуст Арфведсон и Йенс Якоб Берцелиус выделили его из минерального образца, добытого в шахте на острове Утё, что на востоке Стокгольмского архипелага. Берцелиус назвал новый элемент в честь греческого слова "камень" – lithos. Несмотря на свое "тяжелое" название, это самый легкий твердотельный элемент, поэтому мы едва замечаем вес мобильных телефонов, которые сейчас носим с собой повсюду.

Литий – это металл. На его внешней орбите всего один электрон, который легко соединяется с каким-нибудь другим атомом. Когда это происходит, образовывается положительно заряженный и более стабильный ион.

Справедливости ради отметим, что шведские химики на самом деле выделили не чистый металлический литий, а его ионы в форме соли. Чистый литий – повод вызвать пожарную бригаду (о пожарных мы еще вспомним в ходе этой истории). Он является это нестабильным элементом, который необходимо хранить в масле, чтобы он не вступал в реакцию с воздухом.

Слабость лития – его химическая активность – также является и его силой. В начале 1970-х годов Стэнли Уиттингем использовал это его свойство, для высвобождения внешнего электрона элемента, когда разрабатывал первую функциональную литиевую батарею. В 1980 году Джон Гуденаф удвоил потенциал батареи, создав необходимые условия для увеличения ее мощности и эффективности. А в 1985 Акире Ёсино удалось убрать чистое вещество из батареи, полностью заменив его ионами лития, которые гораздо безопасней в использовании. Это сделало аккумулятор практичным и работоспособным. Литий-ионные аккумуляторы принесли человечеству большую пользу, поскольку они позволили разработать портативные компьютеры, мобильные телефоны, электромобили и хранить энергию, генерируемую от солнца и ветра.

Теперь мы вернемся на пятьдесят лет назад, непосредственно к началу истории литий-ионных батарей.

Бензиновый дым подстегивает исследования в сфере аккумуляторных технологий
К середине 20-го века количество автомобилей с бензиновым двигателем стало настолько большим, что их выхлопные газы заметно усугубили проблему смога, от которого страдали большие города. Это, а также осознание того, что используемая для производства топлива нефть является ограниченным ресурсом, стало вызывать тревогу как у производителей автомобилей, так и у нефтяных компаний. Чтобы выжить на рынке, им нужно было начать инвестировать в электромобили и альтернативные источники энергии.

Однако для всего этого требуются мощные аккумуляторы, способные хранить большое количество энергии. А на тот момент на рынке было только два типа аккумуляторов: тяжелый свинцовый аккумулятор, который был изобретен еще в 1859 году (и который до сих пор используется в качестве стартового аккумулятора в автомобилях с бензиновым двигателем) и никель-кадмиевый аккумулятор, разработанный в первой половине 20-го века.

Нефтяные компании инвестируют в новую технологию

Угроза истощения запасов нефти привела к тому, что нефтяной гигант Exxon решил диверсифицировать свою деятельность. Компания вложила крупные средства в фундаментальные исследования и привлекла ведущих ученых-энергетиков того времени, предоставив им свободу заниматься всем, чем угодно, если это не было связано с нефтью.

Британский химик Стэнли Уиттингем был одним из тех, кто стал работать под эгидой Exxon. Случилось это в 1972 году. Он приехал в США на работу в Стэнфордский университет, где исследовал твердые материалы, способные на атомарном уровне присоединять заряженный ион. Это явление называется интеркаляцией. Присоединение таких ионов меняет свойства материалов. В Exxon Стэнли Уиттингем и его коллеги начали исследовать сверхпроводящие материалы, в том числе дисульфид тантала, который может интеркалировать ионы. Исследователи добавляли ионы к этому веществу и изучали, как это влияет на его проводимость.

Уиттингем открывает чрезвычайно энергоемкий материал

Как это часто бывает в науке, работа Уиттингема привела к довольно неожиданному открытию. Неожиданному и ценному. Оказалось, что ионы калия влияют на проводимость дисульфида тантала, и когда Стэнли Уиттингем начал детально изучать полученный материал, то заметил, что он имеет очень высокую энергоемкость. Взаимодействия, которые возникали между ионами калия и дисульфидом тантала, были удивительно богаты энергией, и, когда он измерил напряжение материала, оно составило пару вольт – больше, чем у многих батарей того времени. Стэнли Уиттингем быстро понял, что пришло время сменить направление, перейдя к разработке новых технологий, которые могли бы накапливать энергию, необходимую для электротранспорта будущего. Тем не менее, тантал является одним из самых тяжелых элементов, а рынок не нуждался в еще одном виде тяжелых аккумуляторов. Тогда ученый заменил тантал на титан – элемент со схожими свойствами, но существенно меньшей массой.


Первые аккумуляторы имели в электродах твердое вещество, которое разрушалось, вступая в химическую реакцию с электролитом. Это приводило к уничтожению батареи. Преимущество литиевой батареи Уиттингема в том, что ионы лития хранились в зазорах дисульфида титана в катоде. Когда батарея использовалась, ионы лития перетекали из лития в аноде в дисульфит титани в катоде. Когда батарея заряжалась, ионы лития снова текли обратно.

Литий в отрицательном электроде

Постойте, а где же в этой истории литий? А его Уиттингем использовал как отрицательный электрод в своей инновационной батарее. И выбор лития тут не был случайным. В батарее электроны должны течь от отрицательного электрода (анода) к положительному (катоду). Следовательно, анод должен содержать материал, который легко отдает свои электроны. А литий как раз принадлежит к тем элементам, которые запросто делятся своими электронами.

Результатом работы ученого стала перезаряжаемая литиевая батарея, которая работала при комнатной температуре и имела большое напряжение. Стэнли Уиттингем вместе со своей разработкой отправился в штаб-квартиру Exxon в Нью-Йорк на переговоры. Беседа длилась что-то около 15 минут – руководители компании быстро приняли решение взяться за создание батареи для коммерческого использования на основе открытия ученого.

Внезапные преграды – литий взрывается, а цены на нефть падают

Группа, которая взялась за разработку коммерческих батарей, довольно быстро столкнулась с трудностями. При многократной перезарядке от литиевого электрода начинали расти нитевидные "усы", которые тянулись к другому электроду. Рано или поздно они достигали своей цели, это приводило к короткому замыканию в батарее и взрыву. Пожарных приходилось вызывать настолько часто, что те пригрозили заставить лабораторию купить специальные химикаты, необходимые для тушения горящего лития.

Чтобы сделать батарею безопасной, ученые добавили алюминий к электроду из металлического лития, а также заменили в батарее электролит. В 1976 году Стэнли Уиттингем, наконец уверенный в своей разработке, объявил об открытии, а сами аккумуляторы стали в небольшом количестве производить для швейцарской часовой компании, которая изъявила желание использовать их для своих часов на солнечных батареях.

Дела шли хорошо, и исследовательская группа уже поставила себе следующую амбициозную задачу – увеличить емкость своего аккумулятора до такого размера, чтобы от него можно было запитать автомобиль. Но тут в начале 1980-х гг. случился обвал цен на нефть и компании Exxon пришлось сокращать расходы. Под программу экономии попали исследования группы Уиттингема. Впрочем, лицензию на технологию удалось продать трем компаниям в трех разных частях света. Так работу подхватил Джон Гуденаф.

Нефтяной кризис мотивирует Гуденафа взяться за разработку аккумуляторов

Джон Гуденаф родился в университетском городе Йена, который находится на территории современной Германии, но очень скоро переехал в США, где его отец получил образование, а затем стал преподавателем в Йельском университете. В детстве у Джона, который рос в колыбели науки, были проблемы с обучением чтению. Поэтому вместо букв он стал более внимательно присматриваться к цифрам и так полюбил математику. Отслужив после университета в армии, он решил посвятить свою жизнь еще и физике. Много лет Гуденаф проработал в Лаборатории Линкольна Массачусетского института технологий. За это время ученый успел сделать вклад в развитие технологии оперативной памяти RAM, которая по-прежнему является фундаментальным компонентом вычислительной техники.

Нефтяной кризис семидесятых ударил по Гуденафу, как и по многим гражданам США, это и побудило его заняться разработкой альтернативных источников энергии. Однако Лаборатория Линкольна финансировалась ВВС США, а это накладывало некоторые ограничения на направления исследований. Поэтому, когда ученому предложили должность профессора неорганической химии в Оксфордском университете в Великобритании, он решил рискнуть. И так начал свои исследования в сфере инновационной энергетики.

Ионы лития в оксиде кобальта и высокий вольтаж

Гуденаф был в курсе революционных разработок Уиттингема, но его специальные знания строения вещества подсказывали, что катод в батарее коллеги можно сделать более эффективным, использовав оксид металла вместо сульфида. Исследователи из его группы получили задание найти оксид металла, который вырабатывал бы высокое напряжение при интеркалировании ионов лития, но не разрушался бы после их удаления.

Ученый даже не подозревал, насколько успешной станет эта работа. Батарея Уиттингема генерировала более двух вольт, а Гуденафу удалось обнаружить, что аккумуляторная батарея с литий-кобальтовым оксидом в катоде была почти в два раза мощнее.


Гуденаф начал использовать оксид кобальта в катоде литиевой батареи. Это почти удвоило напряжение батареи и сделало ее гораздо более мощной.

Одним из ключей к этому успеху было осознание Джоном Гуденафом того факта, что батареи не нужно производить в заряженном состоянии, как делалось раньше, а заряжать позднее. 1980 году он представил открытие этого нового, энергоемкого катодного материала, который, несмотря на небольшой вес, увеличивал мощность и емкость аккумуляторов. И это был решающий шаг, который привел к беспроводной революции.

Японские компании желают для своей электроники легких батарей

С падением цены на нефть на Западе интерес к альтернативной энергетике и развитию электротранспорта тоже упал. В Японии же все было совсем иначе – здешние технологические компании отчаянно нуждались в легких перезаряжаемых батареях, которые могли бы питать инновационную электронику, такую как видеокамеры, беспроводные телефоны и компьютеры. Одним из ученых, сумевших вовремя разглядеть эту потребность, стал Акира Ёсино из корпорации Asahi Kasei. "Можно сказать, я унюхал направление, в котором двигались тренды", – пошутил он позднее.

Ёсино создает первый коммерческий литий-ионный аккумулятор

Когда Акира Ёсино решил разработать функциональную перезаряжаемую батарею, он использовал литий-кобальтовый оксид Гуденафа в качестве катода и попытался использовать различные материалы на основе углерода в качестве анода. Исследователи ранее показали, что ионы лития могут быть интеркалированы в молекулярные слои в графите, но электролит батареи разрушал графит. Момент кричать: "Эврика!" для Ёсино настал, когда он попробовал использовать побочный продукт нефтепромышленности – нефтяной кокс. Когда он зарядил это вещество электронами, ионы лития втянулись в материал. Затем, когда он включил батарею, электроны и ионы лития перетекали в сторону оксида кобальта в катоде, который имеет гораздо более высокий потенциал.


Акира Ёсино разработал первый литий-ионный аккумулятор для коммерческого использования. В катоде он использовал оксид лития и кобальта, разработанный Гуденафом, а в аноде – углеродный материал, нефтяной кокс, который также может интеркалировать ионы лития. Функциональность батареи не основана на каких-либо разрушительных химических реакциях. Вместо этого ионы лития текут взад и вперед между электродами, что продлевает срок службы батареи.

Разработанный Ёсидой аккумулятор оказался стабильным, легковесным, имел большую емкость и выдавал невероятные четыре вольта. Главным преимуществом литий-ионной батареи стало то, что ионы интрекалировались в электроды. Большинство других батарей основывались на химических реакциях, при которых электроды медленно, но верно заменялись. Когда же литий-ионный аккумулятор заряжается или используется, ионы перетекают между электродами, не вступая в реакцию со средой. Это означает, что аккумулятор имеет длительный срок службы и может заряжаться сотни раз, прежде чем его производительность ухудшится.

Еще одно большое преимущество разработки японского ученого заключается в том, что в его батарее нет чистого лития. В 1986 году, когда Акира Ёсино проверял безопасность батареи, он проявил осторожность и использовал установку, предназначенную для испытания взрывных устройств. Он бросил большой кусок железа на аккумулятор, но ничего не произошло. Когда такой же эксперимент провели с батареей, содержащей чистый литий, прогремел сильный взрыв. Этот тест на безопасность стал решающим в судьбе батареи. Акира Ёсино назвал его "моментом, когда родилась литий-ионная батарея".

Литий-ионный аккумулятор – серьезный шаг к будущему без ископаемого топлива

Одна из ведущих японских компаний по производству электроники начала продавать первые литий-ионные аккумуляторы в 1991 году. это привело к революции в электронике. Мобильные телефоны уменьшились в размерах, компьютеры стали портативными, появились MP3-плееры и планшеты.

Впоследствии ученые по всему миру искали в периодической таблице элементы для создания еще более качественных батарей, но никому пока не удалось придумать что-то, что могло бы сравниться с высокой емкостью и напряжением литиевой батареи. Тем не менее, литий-ионный аккумулятор все же был изменен и улучшен. Кроме прочего Джон Гуденаф придумал заменить оксид кобальта фосфатом железа, что сделало аккумуляторы более экологичными.

Как практически все, что производится в современном мире, литий-ионные батареи оказывают свое воздействие на окружающую среду. Но при этом они дают и огромные преимущества. Аккумуляторы позволили разработать экологически чистые энергетические технологии и электромобили, способствуя тем самым снижению выбросов парниковых газов и твердых частиц выхлопных газов.

Благодаря своей работе Джон Гуденаф, Стэнли Уиттингем и Акира Ёсино создали необходимые условия для общества, свободного от ископаемого топлива и проводов. И таким образом выполнили завещание Альфреда Нобеля – принесли человечеству наибольшую пользу.


https://bit.ly/2QrhQ0w

суббота, 4 января 2020 г.

Gartner: Top 10 strategic technology trends in 2020


Two decades ago, at the start of the millennium, IT was deeply concerned about Y2K – and the iPhone, Twitter and Facebook didn’t exist. So what’s in store as a new decade begins?




The year 2020 heralds another decade rich with disruptive technology trends. Some of these technologies are already commonplace, but the proliferation of new use cases and applications will see industry grappling with both benefits and opportunities. At Gartner, we predict that the key strategic technology trends in 2020 will include hyperautomation, blockchain and artificial intelligence security, among others. 

1. Automation 2020: Hyperautomation  

Hyperautomation takes applications for task automation to the next level. It enables the application of advanced technologies, such as artificial intelligence (AI) and machine learning, to increasingly automate processes and augment human requirements.
In some cases, it can mean the creation of a digital twin of the organisation – allowing visualisation of how functions, processes and key performance indicators interact to drive value.
But as no single tool can replace humans, hyperautomation will involve a combination of elements. Such tools include robotic process automation and intelligent business management software. 

2. Multiexperience is the new experience 

From 2020 onward, multiexperience will see the traditional idea of computing evolve from a single point of interaction to include multisensory and multitouchpoint interfaces, such as wearables and advanced computer sensors. Over the coming decade, this trend will become what is known as ambient experience.
But multiexperience currently focuses on immersive experiences that use augmented reality, virtual reality, mixed reality, multichannel human-machine interfaces and sensing technologies. 

3. Democracy, 2020 style

The democratisation of technology means providing people with easy access to technical or business expertise without extensive or expensive training. Already referred to as “citizen access”, this trend will focus on four key areas: application development, data and analytics, design, and knowledge.
Democratisation is expected to see the rise of citizen data scientists, programmers and other forms of DIY technology engagement. For example, it could enable more people to generate data models without having the skills of a data scientist. This would, in part, be made possible through AI-driven code generation.

4. Augmentation gets human 

The controversial trend of human augmentation focuses on the use of technology to enhance an individual’s cognitive and physical experiences. It comes with a range of cultural and ethical implications.
For example, using CRISPR (clustered, regularly interspaced, short palindromic repeats) technologies to augment genes has significant ethical consequences. Physical augmentation changes an inherent physical capability by implanting or hosting a technology within or on the body.
Applications include the use of wearables to improve worker safety in the mining industry. In other industries, such as retail and travel, wearables could be used to increase worker productivity. 

5. Greater transparency and traceability

The evolution of technology is creating a trust crisis. Particularly as consumers become more aware of how their personal data is collected and used, organisations are increasingly recognising the liability of storing and gathering data. But many are also using AI and machine learning more to make decisions in place of humans.
This is a further cause of concern, which is driving the need for processes such as explainable AI and AI governance. This trend requires a focus on these key elements of trust: integrity, openness, accountability, competence and consistency. More legislation similar to the European Union’s General Data Protection Regulation (GDPR) is likely to be enacted around the world in the coming years. 

6. The empowered edge

The growing edge computing trend is based on the idea that keeping traffic local and distributed will reduce latency. This involves a topology where information processing and content collection and delivery are placed closer to the sources of the information.
The empowered edge employs the technology on the internet of things (IoT). This extends to the role of devices as the basis for smart spaces and moves key applications and services closer to the people and devices that use them. By 2023, there could be more than 20 times as many smart devices at the edge of the network as in conventional IT roles. 

7. The distributed cloud

The distributed cloud refers to the dispersal of public cloud services to locations outside the cloud provider’s physical datacentres, while still in the control of the provider. In the distributed cloud, the provider is responsible for all aspects of cloud service architecture, delivery, operations, governance and updates.
The evolution from centralised public cloud to distributed public cloud ushers in a new era of cloud computing. The distributed cloud allows datacentres to be located anywhere. This solves both technical and regulatory issues, such as latency and data sovereignty. It also offers the combined benefits of a public cloud service and a private, local cloud. 

8. Even more autonomous things

Autonomous things, which include drones, robots, ships and appliances, exploit AI to perform tasks traditionally undertaken by humans. This technology operates on a spectrum of intelligence ranging from semiautonomous to fully autonomous and across a variety of environments including air, sea and land.
While currently, autonomous things mainly exist in controlled environments, such as warehouses, they will evolve to include open public spaces. Autonomous things will also move from standalone to collaborative swarms – such as the drone swarms used during the Winter Olympic Games in 2018.

9. Towards practical blockchain

Enterprise blockchain today takes a practical approach and implements only some of the elements of a complete blockchain. Everyone with permissioned access sees the same information, and integration is simplified by having a single shared blockchain.
In the future, true blockchain or “blockchain complete” will have the potential to transform industries, and eventually the economy, as complementary technologies such as AI and the IoT begin to integrate alongside blockchain.
This expands the type of participants to include machines, which will be able to exchange a variety of assets. For example, a car would be able to negotiate insurance prices directly with the insurance company based on data gathered by its sensors. Moreover, blockchain will be fully scalable by 2023.

10. Greater AI security 

Evolving technologies such as hyperautomation offer transformational opportunities in the business world. However, they also create security vulnerabilities through potential new points of attack. Security teams must address these challenges and be aware of how AI will impact the security space. 
Future AI security will have three key perspectives: firstly, protecting AI-powered systems, securing AI training data, and training pipelines and machine learning models; secondly, leveraging AI to enhance security defence, and using machine learning to understand patterns, uncover attacks and automate parts of the cybersecurity processes; thirdy, anticipating nefarious use of AI by attackers – identifying attacks and defending against them. 
https://bit.ly/2SUhBwq

пятница, 3 января 2020 г.

Mental Models: The Best Way to Make Intelligent Decisions (109 Models Explained)


Mental models are how we understand the world. Not only do they shape what we think and how we understand but they shape the connections and opportunities that we see. Mental models are how we simplify complexity, why we consider some things more relevant than others, and how we reason.
A mental model is simply a representation of how something works. We cannot keep all of the details of the world in our brains, so we use models to simplify the complex into understandable and organizable chunks.

Thinking Better

The quality of our thinking is proportional to the models in our head and their usefulness in the situation at hand. The more models you have—the bigger your toolbox—the more likely you are to have the right models to see reality. It turns out that when it comes to improving your ability to make decisions variety matters.
Most of us, however, are specialists. Instead of a latticework of mental models, we have a few from our discipline. Each specialist sees something different. By default, a typical Engineer will think in systems. A psychologist will think in terms of incentives. A biologist will think in terms of evolution. By putting these disciplines together in our head, we can walk around a problem in a three dimensional way. If we’re only looking at the problem one way, we’ve got a blind spot. And blind spots can kill you.
Here’s another way to think about it. When a botanist looks at a forest they may focus on the ecosystem, an environmentalist sees the impact of climate change, a forestry engineer the state of the tree growth, a business person the value of the land. None are wrong, but neither are any of them able to describe the full scope of the forest. Sharing knowledge, or learning the basics of the other disciplines, would lead to a more well-rounded understanding that would allow for better initial decisions about managing the forest.
In a famous speech in the 1990s, Charlie Munger summed up the approach to practical wisdom through understanding mental models by saying: “Well, the first rule is that you can’t really know anything if you just remember isolated facts and try and bang ’em back. If the facts don’t hang together on a latticework of theory, you don’t have them in a usable form. You’ve got to have models in your head. And you’ve got to array your experience both vicarious and direct on this latticework of models. You may have noticed students who just try to remember and pound back what is remembered. Well, they fail in school and in life. You’ve got to hang experience on a latticework of models in your head.”

A Latticework of Mental Models

To help you build your latticework of mental models so you can make better decisions, we’ve collected and summarized the ones we’ve found the most useful.
And remember: Building your latticework is a lifelong project. Stick with it, and you’ll find that your ability to understand reality, make consistently good decisions, and help those you love will always be improving.

The FS Latticework of Mental Models

General Thinking Concepts

1. The Map is not the Territory
The map of reality is not reality. Even the best maps are imperfect. That’s because they are reductions of what they represent. If a map were to represent the territory with perfect fidelity, it would no longer be a reduction and thus would no longer be useful to us. A map can also be a snapshot of a point in time, representing something that no longer exists. This is important to keep in mind as we think through problems and make better decisions.
2. Circle of Competence
When ego and not competence drives what we undertake, we have blind spots. If you know what you understand, you know where you have an edge over others. When you are honest about where your knowledge is lacking you know where you are vulnerable and where you can improve. Understanding your circle of competence improves decision making and outcomes.
3. First Principles Thinking
First principles thinking is one of the best ways to reverse-engineer complicated situations and unleash creative possibility. Sometimes called reasoning from first principles, it’s a tool to help clarify complicated problems by separating the underlying ideas or facts from any assumptions based on them. What remains are the essentials. If you know the first principles of something, you can build the rest of your knowledge around them to produce something new.
4. Thought Experiment
Thought experiments can be defined as “devices of the imagination used to investigate the nature of things.” Many disciplines, such as philosophy and physics, make use of thought experiments to examine what can be known. In doing so, they can open up new avenues for inquiry and exploration. Thought experiments are powerful because they help us learn from our mistakes and avoid future ones. They let us take on the impossible, evaluate the potential consequences of our actions, and re-examine history to make better decisions. They can help us both figure out what we really want, and the best way to get there.
5. Second-Order Thinking
Almost everyone can anticipate the immediate results of their actions. This type of first-order thinking is easy and safe but it’s also a way to ensure you get the same results that everyone else gets. Second-order thinking is thinking farther ahead and thinking holistically. It requires us to not only consider our actions and their immediate consequences, but the subsequent effects of those actions as well. Failing to consider the second and third order effects can unleash disaster.
6. Probabilistic Thinking
Probabilistic thinking is essentially trying to estimate, using some tools of math and logic, the likelihood of any specific outcome coming to pass. It is one of the best tools we have to improve the accuracy of our decisions. In a world where each moment is determined by an infinitely complex set of factors, probabilistic thinking helps us identify the most likely outcomes. When we know these our decisions can be more precise and effective.
This includes Fat-Tailed Processes
A process can often look like a normal distribution but have a large “tail” – meaning that seemingly outlier events are far more likely than they are in an actual normal distribution. A strategy or process may be far more risky than a normal distribution is capable of describing if the fat tail is on the negative side, or far more profitable if the fat tail is on the positive side. Much of the human social world is said to be fat-tailed rather than normally distributed.
The Bayesian method is a method of thought (named for Thomas Bayes) whereby one takes into account all prior relevant probabilities and then incrementally updates them as newer information arrives. This method is especially productive given the fundamentally non-deterministic world we experience: We must use prior odds and new information in combination to arrive at our best decisions. This is not necessarily our intuitive decision-making engine.
7. Inversion
Inversion is a powerful tool to improve your thinking because it helps you identify and remove obstacles to success. The root of inversion is “invert,” which means to upend or turn upside down. As a thinking tool it means approaching a situation from the opposite end of the natural starting point. Most of us tend to think one way about a problem: forward. Inversion allows us to flip the problem around and think backward. Sometimes it’s good to start at the beginning, but it can be more useful to start at the end.
8. Occam’s Razor
Simpler explanations are more likely to be true than complicated ones. This is the essence of Occam’s Razor, a classic principle of logic and problem-solving. Instead of wasting your time trying to disprove complex scenarios, you can make decisions more confidently by basing them on the explanation that has the fewest moving parts.
9. Hanlon’s Razor
Hard to trace in its origin, Hanlon’s Razor states that we should not attribute to malice that which is more easily explained by stupidity. In a complex world, using this model helps us avoid paranoia and ideology. By not generally assuming that bad results are the fault of a bad actor, we look for options instead of missing opportunities. This model reminds us that people do make mistakes. It demands that we ask if there is another reasonable explanation for the events that have occurred. The explanation most likely to be right is the one that contains the least amount of intent.

Numeracy

1. Permutations and Combinations
The mathematics of permutations and combinations leads us to understand the practical probabilities of the world around us, how things can be ordered, and how we should think about things.
2. Algebraic Equivalence
The introduction of algebra allowed us to demonstrate mathematically and abstractly that two seemingly different things could be the same. By manipulating symbols, we can demonstrate equivalence or inequivalence, the use of which led humanity to untold engineering and technical abilities. Knowing at least the basics of algebra can allow us to understand a variety of important results.
3. Randomness
Though the human brain has trouble comprehending it, much of the world is composed of random, non-sequential, non-ordered events. We are “fooled” by random effects when we attribute causality to things that are actually outside of our control. If we don’t course-correct for this fooled-by-randomness effect – our faulty sense of pattern-seeking – we will tend to see things as being more predictable than they are and act accordingly.
4. Stochastic Processes (Poisson, Markov, Random Walk)
A stochastic process is a random statistical process and encompasses a wide variety of processes in which the movement of an individual variable can be impossible to predict but can be thought through probabilistically. The wide variety of stochastic methods helps us describe systems of variables through probabilities without necessarily being able to determine the position of any individual variable over time. For example, it’s not possible to predict stock prices on a day-to-day basis, but we can describe the probability of various distributions of their movements over time. Obviously, it is much more likely that the stock market (a stochastic process) will be up or down 1% in a day than up or down 10%, even though we can’t predict what tomorrow will bring.
5. Compounding
It’s been said that Einstein called compounding a wonder of the world. He probably didn’t, but it is a wonder. Compounding is the process by which we add interest to a fixed sum, which then earns interest on the previous sum and the newly added interest, and then earns interest on that amount, and so on ad infinitum. It is an exponential effect, rather than a linear, or additive, effect. Money is not the only thing that compounds; ideas and relationships do as well. In tangible realms, compounding is always subject to physical limits and diminishing returns; intangibles can compound more freely. Compounding also leads to the time value of money, which underlies all of modern finance.
Any reasonably educated person knows that any number multiplied by zero, no matter how large the number, is still zero. This is true in human systems as well as mathematical ones. In some systems, a failure in one area can negate great effort in all other areas. As simple multiplication would show, fixing the “zero” often has a much greater effect than does trying to enlarge the other areas.
7. Churn
Insurance companies and subscription services are well aware of the concept of churn – every year, a certain number of customers are lost and must be replaced. Standing still is the equivalent of losing, as seen in the model called the “Red Queen Effect.” Churn is present in many business and human systems: A constant figure is periodically lost and must be replaced before any new figures are added over the top.
8. Law of Large Numbers
One of the fundamental underlying assumptions of probability is that as more instances of an event occur, the actual results will converge on the expected ones. For example, if I know that the average man is 5 feet 10 inches tall, I am far more likely to get an average of 5′10″ by selecting 500 men at random than 5 men at random. The opposite of this model is the law of small numbers, which states that small samples can and should be looked at with great skepticism.
9. Bell Curve/Normal Distribution
The normal distribution is a statistical process that leads to the well-known graphical representation of a bell curve, with a meaningful central “average” and increasingly rare standard deviations from that average when correctly sampled. (The so-called “central limit” theorem.) Well-known examples include human height and weight, but it’s just as important to note that many common processes, especially in non-tangible systems like social systems, do not follow the normal distribution.
One of the most common processes that does not fit the normal distribution is that of a power law, whereby one quantity varies with another’s exponent rather than linearly. For example, the Richter scale describes the power of earthquakes on a power-law distribution scale: an 8 is 10x more destructive than a 7, and a 9 is 10x more destructive than an 8. The central limit theorem does not apply and there is thus no “average” earthquake. This is true of all power-law distributions.
In a normally distributed system, long deviations from the average will tend to return to that average with an increasing number of observations: the so-called Law of Large Numbers. We are often fooled by regression to the mean, as with a sick patient improving spontaneously around the same time they begin taking an herbal remedy, or a poorly performing sports team going on a winning streak. We must be careful not to confuse statistically likely events with causal ones.
12. Order of Magnitude
In many, perhaps most, systems, quantitative description down to a precise figure is either impossible or useless (or both). For example, estimating the distance between our galaxy and the next one over is a matter of knowing not the precise number of miles, but how many zeroes are after the 1. Is the distance about 1 million miles or about 1 billion? This thought habit can help us escape useless precision.

Systems

1. Scale
One of the most important principles of systems is that they are sensitive to scale. Properties (or behaviors) tend to change when you scale them up or down. In studying complex systems, we must always be roughly quantifying – in orders of magnitude, at least – the scale at which we are observing, analyzing, or predicting the system.
2. Law of Diminishing Returns
Related to scale, most important real-world results are subject to an eventual decrease of incremental value. A good example would be a poor family: Give them enough money to thrive, and they are no longer poor. But after a certain point, additional money will not improve their lot; there is a clear diminishing return of additional dollars at some roughly quantifiable point. Often, the law of diminishing returns veers into negative territory – i.e., receiving too much money could destroy the poor family.
3. Pareto Principle
Named for Italian polymath Vilfredo Pareto, who noticed that 80% of Italy’s land was owned by about 20% of its population, the Pareto Principle states that a small amount of some phenomenon causes a disproportionately large effect. The Pareto Principle is an example of a power-law type of statistical distribution – as distinguished from a traditional bell curve – and is demonstrated in various phenomena ranging from wealth to city populations to important human habits.
4. Feedback Loops (and Homeostasis)
All complex systems are subject to positive and negative feedback loops whereby A causes B, which in turn influences A (and C), and so on – with higher-order effects frequently resulting from continual movement of the loop. In a homeostatic system, a change in A is often brought back into line by an opposite change in B to maintain the balance of the system, as with the temperature of the human body or the behavior of an organizational culture. Automatic feedback loops maintain a “static” environment unless and until an outside force changes the loop. A “runaway feedback loop” describes a situation in which the output of a reaction becomes its own catalyst (auto-catalysis).
5. Chaos Dynamics (Butterfly Effect)/ (Sensitivity to Initial Conditions)
In a world such as ours, governed by chaos dynamics, small changes (perturbations) in initial conditions have massive downstream effects as near-infinite feedback loops occur; this phenomenon is also called the butterfly effect. This means that some aspects of physical systems (like the weather more than a few days from now) as well as social systems (the behavior of a group of human beings over a long period) are fundamentally unpredictable.
6. Preferential Attachment (Cumulative Advantage)
A preferential attachment situation occurs when the current leader is given more of the reward than the laggards, thereby tending to preserve or enhance the status of the leader. A strong network effect is a good example of preferential attachment; a market with 10x more buyers and sellers than the next largest market will tend to have a preferential attachment dynamic.
7. Emergence
Higher-level behavior tends to emerge from the interaction of lower-order components. The result is frequently not linear – not a matter of simple addition – but rather non-linear, or exponential. An important resulting property of emergent behavior is that it cannot be predicted from simply studying the component parts.
8. Irreducibility 
We find that in most systems there are irreducible quantitative properties, such as complexity, minimums, time, and length. Below the irreducible level, the desired result simply does not occur. One cannot get several women pregnant to reduce the amount of time needed to have one child, and one cannot reduce a successfully built automobile to a single part. These results are, to a defined point, irreducible.
A concept introduced by the economist and ecologist Garrett Hardin, the Tragedy of the Commons states that in a system where a common resource is shared, with no individual responsible for the wellbeing of the resource, it will tend to be depleted over time. The Tragedy is reducible to incentives: Unless people collaborate, each individual derives more personal benefit than the cost that he or she incurs, and therefore depletes the resource for fear of missing out.
Gresham’s Law, named for the financier Thomas Gresham, states that in a system of circulating currency, forged currency will tend to drive out real currency, as real currency is hoarded and forged currency is spent. We see a similar result in human systems, as with bad behavior driving out good behavior in a crumbling moral system, or bad practices driving out good practices in a crumbling economic system. Generally, regulation and oversight are required to prevent results that follow Gresham’s Law.
11. Algorithms
While hard to precisely define, an algorithm is generally an automated set of rules or a “blueprint” leading a series of steps or actions resulting in a desired outcome, and often stated in the form of a series of “If → Then” statements. Algorithms are best known for their use in modern computing, but are a feature of biological life as well. For example, human DNA contains an algorithm for building a human being.
12. Fragility – Robustness – Antifragility
Popularized by Nassim Taleb, the sliding scale of fragility, robustness, and antifragility refers to the responsiveness of a system to incremental negative variability. A fragile system or object is one in which additional negative variability has a disproportionately negative impact, as with a coffee cup shattering from a 6-foot fall, but receiving no damage at all (rather than 1/6th of the damage) from a 1-foot fall. A robust system or object tends to be neutral to the additional negativity variability, and of course, an antifragile system benefits: If there were a cup that got stronger when dropped from 6 feet than when dropped from 1 foot, it would be considered antifragile.
13. Backup Systems/Redundancy
A critical model of the engineering profession is that of backup systems. A good engineer never assumes the perfect reliability of the components of the system. He or she builds in redundancy to protect the integrity of the total system. Without the application of this robustness principle, tangible and intangible systems tend to fail over time.
Similarly, engineers have also developed the habit of adding a margin for error into all calculations. In an unknown world, driving a 9,500-pound bus over a bridge built to hold precisely 9,600 pounds is rarely seen as intelligent. Thus, on the whole, few modern bridges ever fail. In practical life outside of physical engineering, we can often profitably give ourselves margins as robust as the bridge system.
15. Criticality
A system becomes critical when it is about to jump discretely from one phase to another. The marginal utility of the last unit before the phase change is wildly higher than any unit before it. A frequently cited example is water turning from a liquid to a vapor when heated to a specific temperature. “Critical mass” refers to the mass needed to have the critical event occur, most commonly in a nuclear system.
16. Network Effects
A network tends to become more valuable as nodes are added to the network: this is known as the network effect. An easy example is contrasting the development of the electricity system and the telephone system. If only one house has electricity, its inhabitants have gained immense value, but if only one house has a telephone, its inhabitants have gained nothing of use. Only with additional telephones does the phone network gain value. This network effect is widespread in the modern world and creates immense value for organizations and customers alike.
17. Via Negativa – Omission/Removal/Avoidance of Harm
In many systems, improvement is at best, or at times only, a result of removing bad elements rather than of adding good elements. This is a credo built into the modern medical profession: First, do no harm. Similarly, if one has a group of children behaving badly, removal of the instigator is often much more effective than any form of punishment meted out to the whole group.
18. The Lindy Effect
The Lindy Effect refers to the life expectancy of a non-perishable object or idea being related to its current lifespan. If an idea or object has lasted for X number of years, it would be expected (on average) to last another X years. Although a human being who is 90 and lives to 95 does not add 5 years to his or her life expectancy, non-perishables lengthen their life expectancy as they continually survive. A classic text is a prime example: if humanity has been reading Shakespeare’s plays for 500 years, it will be expected to read them for another 500.
19. Renormalization Group
The renormalization group technique allows us to think about physical and social systems at different scales. An idea from physics, and a complicated one at that, the application of a renormalization group to social systems allows us to understand why a small number of stubborn individuals can have a disproportionate impact if those around them follow suit on increasingly large scales.
20. Spring-loading
A system is spring-loaded if it is coiled in a certain direction, positive or negative. Positively spring-loading systems and relationships is important in a fundamentally unpredictable world to help protect us against negative events. The reverse can be very destructive.
A complex adaptive system, as distinguished from a complex system in general, is one that can understand itself and change based on that understanding. Complex adaptive systems are social systems. The difference is best illustrated by thinking about weather prediction contrasted to stock market prediction. The weather will not change based on an important forecaster’s opinion, but the stock market might. Complex adaptive systems are thus fundamentally not predictable.

Physical World

1. Laws of Thermodynamics
The laws of thermodynamics describe energy in a closed system. The laws cannot be escaped and underlie the physical world. They describe a world in which useful energy is constantly being lost, and energy cannot be created or destroyed. Applying their lessons to the social world can be a profitable enterprise.
2. Reciprocity
If I push on a wall, physics tells me that the wall pushes back with equivalent force. In a biological system, if one individual acts on another, the action will tend to be reciprocated in kind. And of course, human beings act with intense reciprocity demonstrated as well.
Velocity is not equivalent to speed; the two are sometimes confused. Velocity is speed plus vector: how fast something gets somewhere. An object that moves two steps forward and then two steps back has moved at a certain speed but shows no velocity. The addition of the vector, that critical distinction, is what we should consider in practical life.
Relativity has been used in several contexts in the world of physics, but the important aspect to study is the idea that an observer cannot truly understand a system of which he himself is a part. For example, a man inside an airplane does not feel like he is experiencing movement, but an outside observer can see that movement is occurring. This form of relativity tends to affect social systems in a similar way.
A fire is not much more than a combination of carbon and oxygen, but the forests and coal mines of the world are not combusting at will because such a chemical reaction requires the input of a critical level of “activation energy” in order to get a reaction started. Two combustible elements alone are not enough.
6. Catalysts
A catalyst either kick-starts or maintains a chemical reaction, but isn’t itself a reactant. The reaction may slow or stop without the addition of catalysts. Social systems, of course, take on many similar traits, and we can view catalysts in a similar light.
Most of the engineering marvels of the world were accomplished with applied leverage. As famously stated by Archimedes, “Give me a lever long enough and I shall move the world.” With a small amount of input force, we can make a great output force through leverage. Understanding where we can apply this model to the human world can be a source of great success.
8. Inertia
An object in motion with a certain vector wants to continue moving in that direction unless acted upon. This is a fundamental physical principle of motion; however, individuals, systems, and organizations display the same effect. It allows them to minimize the use of energy, but can cause them to be destroyed or eroded.
9. Alloying
When we combine various elements, we create new substances. This is no great surprise, but what can be surprising in the alloying process is that 2+2 can equal not 4 but 6 – the alloy can be far stronger than the simple addition of the underlying elements would lead us to believe. This process leads us to engineer great physical objects, but we understand many intangibles in the same way; a combination of the right elements in social systems or even individuals can create a 2+2=6 effect similar to alloying.
10. Viscosity
Viscosity is the “measure of how hard it is for one layer of fluid to slide over another layer.” If a liquid is hard to move it is more viscous. If it is more viscous there is more resistance. Viscosity isn’t usually an issue for humans. We have to deal with gravity and inertia, although viscosity is always present. But for small particles, gravity and inertia become a non-issue compared to viscosity. We thus learn that when we change the scale we change what forces are relevant.

The Biological World

All creatures respond to incentives to keep themselves alive. This is the basic insight of biology. Constant incentives will tend to cause a biological entity to have constant behavior, to an extent. Humans are included and are particularly great examples of the incentive-driven nature of biology; however, humans are complicated in that their incentives can be hidden or intangible. The rule of life is to repeat what works and has been rewarded.
2. Cooperation (Including Symbiosis and Prisoner’s Dilemma)
Competition tends to describe most biological systems, but cooperation at various levels is just as important a dynamic. In fact, the cooperation of a bacterium and a simple cell probably created the first complex cell and all of the life we see around us. Without cooperation, no group survives, and the cooperation of groups gives rise to even more complex versions of organization. Cooperation and competition tend to coexist at multiple levels.
The Prisoner’s Dilemma is a famous application of game theory in which two prisoners are both better off cooperating with each other, but if one of them cheats, the other is better off cheating. Thus the dilemma. This model shows up in economic life, in war, and in many other areas of practical human life. Though the prisoner’s dilemma theoretically leads to a poor result, in the real world, cooperation is nearly always possible and must be explored.
3. Tendency to Minimize Energy Output (Mental & Physical)
In a physical world governed by thermodynamics and competition for limited energy and resources, any biological organism that was wasteful with energy would be at a severe disadvantage for survival. Thus, we see in most instances that behavior is governed by a tendency to minimize energy usage when at all possible.
4. Adaptation
Species tend to adapt to their surroundings in order to survive, given the combination of their genetics and their environment – an always-unavoidable combination. However, adaptations made in an individual’s lifetime are not passed down genetically, as was once thought: Populations of species adapt through the process of evolution by natural selection, as the most-fit examples of the species replicate at an above-average rate.
5. Evolution by Natural Selection
Evolution by natural selection was once called “the greatest idea anyone ever had.” In the 19th century, Charles Darwin and Alfred Russel Wallace simultaneous realized that species evolve through random mutation and differential survival rates. If we call human intervention in animal-breeding an example of “artificial selection,” we can call Mother Nature deciding the success or failure of a particular mutation “natural selection.” Those best suited for survival tend to be preserved. But of course, conditions change.
6. The Red Queen Effect (Co-evolutionary Arms Race)
The evolution-by-natural-selection model leads to something of an arms race among species competing for limited resources. When one species evolves an advantageous adaptation, a competing species must respond in kind or fail as a species. Standing still can mean falling behind. This arms race is called the Red Queen Effect for the character in Alice in Wonderland who said, “Now, here, you see, it takes all the running you can do, to keep in the same place.”
7. Replication
A fundamental building block of diverse biological life is high-fidelity replication. The fundamental unit of replication seems to be the DNA molecule, which provides a blueprint for the offspring to be built from physical building blocks. There are a variety of replication methods, but most can be lumped into sexual and asexual.
8. Hierarchical and Other Organizing Instincts
Most complex biological organisms have an innate feel for how they should organize. While not all of them end up in hierarchical structures, many do, especially in the animal kingdom. Human beings like to think they are outside of this, but they feel the hierarchical instinct as strongly as any other organism. This includes the Stanford Prison Experiment and Milgram Experiments, which demonstrated what humans learned practically many years before: the human bias towards being influenced by authority. In a dominance hierarchy such as ours, we tend to look to the leader for guidance on behavior, especially in situations of stress or uncertainty. Thus, authority figures have a responsibility to act well, whether they like it or not.
9. Self-Preservation Instincts
Without a strong self-preservation instinct in an organism’s DNA, it would tend to disappear over time, thus eliminating that DNA. While cooperation is another important model, the self-preservation instinct is strong in all organisms and can cause violent, erratic, and/or destructive behavior for those around them.
10. Simple Physiological Reward-Seeking
All organisms feel pleasure and pain from simple chemical processes in their bodies which respond predictably to the outside world. Reward-seeking is an effective survival-promoting technique on average. However, those same pleasure receptors can be co-opted to cause destructive behavior, as with drug abuse.
11. Exaptation
Introduced by the biologist Steven Jay Gould, an exaptation refers to a trait developed for one purpose that is later used for another purpose. This is one way to explain the development of complex biological features like an eyeball; in a more primitive form, it may have been used for something else. Once it was there, and once it developed further, 3D sight became possible.
12. Ecosystems
An ecosystem describes any group of organisms coexisting with the natural world. Most ecosystems show diverse forms of life taking on different approaches to survival, with such pressures leading to varying behavior. Social systems can be seen in the same light as the physical ecosystems and many of the same conclusions can be made.
13. Niches
Most organisms find a niche: a method of competing and behaving for survival. Usually, a species will select a niche for which it is best adapted. The danger arises when multiple species begin competing for the same niche, which can cause an extinction – there can be only so many species doing the same thing before limited resources give out.
14. Dunbar’s Number
The primatologist Robin Dunbar observed through study that the number of individuals a primate can get to know and trust closely is related to the size of its neocortex. Extrapolating from his study of primates, Dunbar theorized that the Dunbar number for a human being is somewhere in the 100–250 range, which is supported by certain studies of human behavior and social networks.

Human Nature & Judgment

1. Trust
Fundamentally, the modern world operates on trust. Familial trust is generally a given (otherwise we’d have a hell of a time surviving), but we also choose to trust chefs, clerks, drivers, factory workers, executives, and many others. A trusting system is one that tends to work most efficiently; the rewards of trust are extremely high.
2. Bias from Incentives
Highly responsive to incentives, humans have perhaps the most varied and hardest to understand set of incentives in the animal kingdom. This causes us to distort our thinking when it is in our own interest to do so. A wonderful example is a salesman truly believing that his product will improve the lives of its users. It’s not merely convenient that he sells the product; the fact of his selling the product causes a very real bias in his own thinking.
3. Pavlovian Association
Ivan Pavlov very effectively demonstrated that animals can respond not just to direct incentives but also to associated objects; remember the famous dogs salivating at the ring of a bell. Human beings are much the same and can feel positive and negative emotion towards intangible objects, with the emotion coming from past associations rather than direct effects.
Humans have a tendency to feel envious of those receiving more than they are, and a desire “get what is theirs” in due course. The tendency towards envy is strong enough to drive otherwise irrational behavior, but is as old as humanity itself. Any system ignorant of envy effects will tend to self-immolate over time.
Based on past association, stereotyping, ideology, genetic influence, or direct experience, humans have a tendency to distort their thinking in favor of people or things that they like and against people or things they dislike. This tendency leads to overrating the things we like and underrating or broadly categorizing things we dislike, often missing crucial nuances in the process.
6. Denial 
Anyone who has been alive long enough realizes that, as the saying goes, “denial is not just a river in Africa.” This is powerfully demonstrated in situations like war or drug abuse, where denial has powerful destructive effects but allows for behavioral inertia. Denying reality can be a coping mechanism, a survival mechanism, or a purposeful tactic.
One of the most useful findings of modern psychology is what Daniel Kahneman calls the Availability Bias or Heuristic: We tend to most easily recall what is salient, important, frequent, and recent. The brain has its own energy-saving and inertial tendencies that we have little control over – the availability heuristic is likely one of them. Having a truly comprehensive memory would be debilitating. Some sub-examples of the availability heuristic include the Anchoring and Sunk Cost Tendencies.
8. Representativeness Heuristic
The three major psychological findings that fall under Representativeness, also defined by Kahneman and his partner Tversky, are:
An unconscious failure to look at past odds in determining current or future behavior.
b. Tendency to Stereotype 
The tendency to broadly generalize and categorize rather than look for specific nuance. Like availability, this is generally a necessary trait for energy-saving in the brain.
c. Failure to See False Conjunctions
Most famously demonstrated by the Linda Test, the same two psychologists showed that students chose more vividly described individuals as more likely to fit into a predefined category than individuals with broader, more inclusive, but less vivid descriptions, even if the vivid example was a mere subset of the more inclusive set. These specific examples are seen as more representative of the category than those with the broader but vaguer descriptions, in violation of logic and probability.
9. Social Proof (Safety in Numbers)
Human beings are one of many social species, along with bees, ants, and chimps, among many more. We have a DNA-level instinct to seek safety in numbers and will look for social guidance of our behavior. This instinct creates a cohesive sense of cooperation and culture which would not otherwise be possible but also leads us to do foolish things if our group is doing them as well.
Human beings have been appropriately called “the storytelling animal” because of our instinct to construct and seek meaning in narrative. It’s likely that long before we developed the ability to write or to create objects, we were telling stories and thinking in stories. Nearly all social organizations, from religious institutions to corporations to nation-states, run on constructions of the narrative instinct.
11. Curiosity Instinct
We like to call other species curious, but we are the most curious of all, an instinct which led us out of the savanna and led us to learn a great deal about the world around us, using that information to create the world in our collective minds. The curiosity instinct leads to unique human behavior and forms of organization like the scientific enterprise. Even before there were direct incentives to innovate, humans innovated out of curiosity.
12. Language Instinct
The psychologist Steven Pinker calls our DNA-level instinct to learn grammatically constructed language the Language Instinct. The idea that grammatical language is not a simple cultural artifact was first popularized by the linguist Noam Chomsky. As we saw with the narrative instinct, we use these instincts to create shared stories, as well as to gossip, solve problems, and fight, among other things. Grammatically ordered language theoretically carries infinite varying meaning.
13. First-Conclusion Bias
As Charlie Munger famously pointed out, the mind works a bit like a sperm and egg: the first idea gets in and then the mind shuts. Like many other tendencies, this is probably an energy-saving device. Our tendency to settle on first conclusions leads us to accept many erroneous results and cease asking questions; it can be countered with some simple and useful mental routines.
It’s important for human beings to generalize; we need not see every instance to understand the general rule, and this works to our advantage. With generalizing, however, comes a subset of errors when we forget about the Law of Large Numbers and act as if it does not exist. We take a small number of instances and create a general category, even if we have no statistically sound basis for the conclusion.
15. Relative Satisfaction/Misery Tendencies
The envy tendency is probably the most obvious manifestation of the relative satisfaction tendency, but nearly all studies of human happiness show that it is related to the state of the person relative to either their past or their peers, not absolute. These relative tendencies cause us great misery or happiness in a very wide variety of objectively different situations and make us poor predictors of our own behavior and feelings.
As psychologists have frequently and famously demonstrated, humans are subject to a bias towards keeping their prior commitments and staying consistent with our prior selves when possible. This trait is necessary for social cohesion: people who often change their conclusions and habits are often distrusted. Yet our bias towards staying consistent can become, as one wag put it, a “hobgoblin of foolish minds” – when it is combined with the first-conclusion bias, we end up landing on poor answers and standing pat in the face of great evidence.
Once we know the outcome, it’s nearly impossible to turn back the clock mentally. Our narrative instinct leads us to reason that we knew it all along (whatever “it” is), when in fact we are often simply reasoning post-hoc with information not available to us before the event. The hindsight bias explains why it’s wise to keep a journal of important decisions for an unaltered record and to re-examine our beliefs when we convince ourselves that we knew it all along.
Justice runs deep in our veins. In another illustration of our relative sense of well-being, we are careful arbiters of what is fair. Violations of fairness can be considered grounds for reciprocal action, or at least distrust. Yet fairness itself seems to be a moving target. What is seen as fair and just in one time and place may not be in another. Consider that slavery has been seen as perfectly natural and perfectly unnatural in alternating phases of human existence.
19. Tendency to Overestimate Consistency of Behavior (Fundamental Attribution Error)
We tend to over-ascribe the behavior of others to their innate traits rather than to situational factors, leading us to overestimate how consistent that behavior will be in the future. In such a situation, predicting behavior seems not very difficult. Of course, in practice this assumption is consistently demonstrated to be wrong, and we are consequently surprised when others do not act in accordance with the “innate” traits we’ve endowed them with.
20. Influence of Stress (Including Breaking Points)
Stress causes both mental and physiological responses and tends to amplify the other biases. Almost all human mental biases become worse in the face of stress as the body goes into a fight-or-flight response, relying purely on instinct without the emergency brake of Daniel Kahneman’s “System 2” type of reasoning. Stress causes hasty decisions, immediacy, and a fallback to habit, thus giving rise to the elite soldiers’ motto: “In the thick of battle, you will not rise to the level of your expectations, but fall to the level of your training.”
A major problem with historiography – our interpretation of the past – is that history is famously written by the victors. We do not see what Nassim Taleb calls the “silent grave” – the lottery ticket holders who did not win. Thus, we over-attribute success to things done by the successful agent rather than to randomness or luck, and we often learn false lessons by exclusively studying victors without seeing all of the accompanying losers who acted in the same way but were not lucky enough to succeed.
22. Tendency to Want to Do Something (Fight/Flight, Intervention, Demonstration of Value, etc.)
We might term this Boredom Syndrome: Most humans have the tendency to need to act, even when their actions are not needed. We also tend to offer solutions even when we do not have knowledge to solve the problem.
What a man wishes, he also believes. Similarly, what we believe is what we choose to see. This is commonly referred to as the confirmation bias. It is a deeply ingrained mental habit, both energy-conserving and comfortable, to look for confirmations of long-held wisdom rather than violations. Yet the scientific process – including hypothesis generation, blind testing when needed, and objective statistical rigor – is designed to root out precisely the opposite, which is why it works so well when followed.
The modern scientific enterprise operates under the principle of falsification: A method is termed scientific if it can be stated in such a way that a certain defined result would cause it to be proved false. Pseudo-knowledge and pseudo-science operate and propagate by being unfalsifiable – as with astrology, we are unable to prove them either correct or incorrect because the conditions under which they would be shown false are never stated.

Microeconomics & Strategy

1. Opportunity Costs
Doing one thing means not being able to do another. We live in a world of trade-offs, and the concept of opportunity cost rules all. Most aptly summarized as “there is no such thing as a free lunch.”
2. Creative Destruction
Coined by economist Joseph Schumpeter, the term “creative destruction” describes the capitalistic process at work in a functioning free-market system. Motivated by personal incentives (including but not limited to financial profit), entrepreneurs will push to best one another in a never-ending game of creative one-upmanship, in the process destroying old ideas and replacing them with newer technology. Beware getting left behind.
The Scottish economist David Ricardo had an unusual and non-intuitive insight: Two individuals, firms, or countries could benefit from trading with one another even if one of them was better at everything. Comparative advantage is best seen as an applied opportunity cost: If it has the opportunity to trade, an entity gives up free gains in productivity by not focusing on what it does best.
4. Specialization (Pin Factory)
Another Scottish economist, Adam Smith, highlighted the advantages gained in a free-market system by specialization. Rather than having a group of workers each producing an entire item from start to finish, Smith explained that it’s usually far more productive to have each of them specialize in one aspect of production. He also cautioned, however, that each worker might not enjoy such a life; this is a trade-off of the specialization model.
5. Seizing the Middle
In chess, the winning strategy is usually to seize control of the middle of the board, so as to maximize the potential moves that can be made and control the movement of the maximal number of pieces. The same strategy works profitably in business, as can be demonstrated by John D. Rockefeller’s control of the refinery business in the early days of the oil trade and Microsoft’s control of the operating system in the early days of the software trade.
6. Trademarks, Patents, and Copyrights
These three concepts, along with other related ones, protect the creative work produced by enterprising individuals, thus creating additional incentives for creativity and promoting the creative-destruction model of capitalism. Without these protections, information and creative workers have no defense against their work being freely distributed.
7. Double-Entry Bookkeeping
One of the marvels of modern capitalism has been the bookkeeping system introduced in Genoa in the 14th century. The double-entry system requires that every entry, such as income, also be entered into another corresponding account. Correct double-entry bookkeeping acts as a check on potential accounting errors and allows for accurate records and thus, more accurate behavior by the owner of a firm.
8. Utility (Marginal, Diminishing, Increasing)
The usefulness of additional units of any good tends to vary with scale. Marginal utility allows us to understand the value of one additional unit, and in most practical areas of life, that utility diminishes at some point. On the other hand, in some cases, additional units are subject to a “critical point” where the utility function jumps discretely up or down. As an example, giving water to a thirsty man has diminishing marginal utility with each additional unit, and can eventually kill him with enough units.
9. Bottlenecks
A bottleneck describes the place at which a flow (of a tangible or intangible) is stopped, thus holding it back from continuous movement. As with a clogged artery or a blocked drain, a bottleneck in production of any good or service can be small but have a disproportionate impact if it is in the critical path.
10. Bribery
Often ignored in mainstream economics, the concept of bribery is central to human systems: Given the chance, it is often easier to pay a certain agent to look the other way than to follow the rules. The enforcer of the rules is then neutralized. This principle/agent problem can be seen as a form of arbitrage.
11. Arbitrage
Given two markets selling an identical good, an arbitrage exists if the good can profitably be bought in one market and sold at a profit in the other. This model is simple on its face, but can present itself in disguised forms: The only gas station in a 50-mile radius is also an arbitrage as it can buy gasoline and sell it at the desired profit (temporarily) without interference. Nearly all arbitrage situations eventually disappear as they are discovered and exploited.
The basic equation of biological and economic life is one of limited supply of necessary goods and competition for those goods. Just as biological entities compete for limited usable energy, so too do economic entities compete for limited customer wealth and limited demand for their products. The point at which supply and demand for a given good are equal is called an equilibrium; however, in practical life, equilibrium points tend to be dynamic and changing, never static.
13. Scarcity
Game theory describes situations of conflict, limited resources, and competition. Given a certain situation and a limited amount of resources and time, what decisions are competitors likely to make, and which should they make? One important note is that traditional game theory may describe humans as more rational than they really are. Game theory is theory, after all.
Mr. Market was introduced by the investor Benjamin Graham in his seminal book The Intelligent Investor to represent the vicissitudes of the financial markets. As Graham explains, the markets are a bit like a moody neighbor, sometimes waking up happy and sometimes waking up sad – your job as an investor is to take advantage of him in his bad moods and sell to him in his good moods. This attitude is contrasted to an efficient-market hypothesis in which Mr. Market always wakes up in the middle of the bed, never feeling overly strong in either direction.

Military & War

1. Seeing the Front
One of the most valuable military tactics is the habit of “personally seeing the front” before making decisions – not always relying on advisors, maps, and reports, all of which can be either faulty or biased. The Map/Territory model illustrates the problem with not seeing the front, as does the incentive model. Leaders of any organization can generally benefit from seeing the front, as not only does it provide firsthand information, but it also tends to improve the quality of secondhand information.
2. Asymmetric Warfare
The asymmetry model leads to an application in warfare whereby one side seemingly “plays by different rules” than the other side due to circumstance. Generally, this model is applied by an insurgency with limited resources. Unable to out-muscle their opponents, asymmetric fighters use other tactics, as with terrorism creating fear that’s disproportionate to their actual destructive ability.
3. Two-Front War
The Second World War was a good example of a two-front war. Once Russia and Germany became enemies, Germany was forced to split its troops and send them to separate fronts, weakening their impact on either front. In practical life, opening a two-front war can often be a useful tactic, as can solving a two-front war or avoiding one, as in the example of an organization tamping down internal discord to focus on its competitors.
Though asymmetric insurgent warfare can be extremely effective, over time competitors have also developed counterinsurgency strategies. Recently and famously, General David Petraeus of the United States led the development of counterinsurgency plans that involved no additional force but substantial additional gains. Tit-for-tat warfare or competition will often lead to a feedback loop that demands insurgency and counterinsurgency.
Somewhat paradoxically, the stronger two opponents become, the less likely they may be to destroy one another. This process of mutually assured destruction occurs not just in warfare, as with the development of global nuclear warheads, but also in business, as with the avoidance of destructive price wars between competitors. However, in a fat-tailed world, it is also possible that mutually assured destruction scenarios simply make destruction more severe in the event of a mistake (pushing destruction into the “tails” of the distribution).


https://bit.ly/2QMdNdN